// Copyright (c) 2006, Google Inc. // All rights reserved. // // Author: Li Liu // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include #include #include #include #include "client/linux/handler/exception_handler.h" #include "common/linux/guid_creator.h" #include "google_breakpad/common/minidump_format.h" namespace google_breakpad { // Signals that we are interested. int SigTable[] = { #if defined(SIGSEGV) SIGSEGV, #endif #ifdef SIGABRT SIGABRT, #endif #ifdef SIGFPE SIGFPE, #endif #ifdef SIGILL SIGILL, #endif #ifdef SIGBUS SIGBUS, #endif }; std::vector *ExceptionHandler::handler_stack_ = NULL; int ExceptionHandler::handler_stack_index_ = 0; pthread_mutex_t ExceptionHandler::handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER; ExceptionHandler::ExceptionHandler(const string &dump_path, FilterCallback filter, MinidumpCallback callback, void *callback_context, bool install_handler) : filter_(filter), callback_(callback), callback_context_(callback_context), dump_path_(), installed_handler_(install_handler) { set_dump_path(dump_path); act_.sa_handler = HandleException; act_.sa_flags = SA_ONSTACK; sigemptyset(&act_.sa_mask); // now, make sure we're blocking all the signals we are handling // when we're handling any of them for ( size_t i = 0; i < sizeof(SigTable) / sizeof(SigTable[0]); ++i) { sigaddset(&act_.sa_mask, SigTable[i]); } if (install_handler) { SetupHandler(); pthread_mutex_lock(&handler_stack_mutex_); if (handler_stack_ == NULL) handler_stack_ = new std::vector; handler_stack_->push_back(this); pthread_mutex_unlock(&handler_stack_mutex_); } } ExceptionHandler::~ExceptionHandler() { TeardownAllHandler(); pthread_mutex_lock(&handler_stack_mutex_); if (handler_stack_->back() == this) { handler_stack_->pop_back(); } else { fprintf(stderr, "warning: removing Breakpad handler out of order\n"); for (std::vector::iterator iterator = handler_stack_->begin(); iterator != handler_stack_->end(); ++iterator) { if (*iterator == this) { handler_stack_->erase(iterator); } } } if (handler_stack_->empty()) { // When destroying the last ExceptionHandler that installed a handler, // clean up the handler stack. delete handler_stack_; handler_stack_ = NULL; } pthread_mutex_unlock(&handler_stack_mutex_); } bool ExceptionHandler::WriteMinidump() { bool success = InternalWriteMinidump(0, 0, NULL); UpdateNextID(); return success; } // static bool ExceptionHandler::WriteMinidump(const string &dump_path, MinidumpCallback callback, void *callback_context) { ExceptionHandler handler(dump_path, NULL, callback, callback_context, false); return handler.InternalWriteMinidump(0, 0, NULL); } void ExceptionHandler::SetupHandler() { // Signal on a different stack to avoid using the stack // of the crashing thread. struct sigaltstack sig_stack; sig_stack.ss_sp = malloc(MINSIGSTKSZ); if (sig_stack.ss_sp == NULL) return; sig_stack.ss_size = MINSIGSTKSZ; sig_stack.ss_flags = 0; if (sigaltstack(&sig_stack, NULL) < 0) return; for (size_t i = 0; i < sizeof(SigTable) / sizeof(SigTable[0]); ++i) SetupHandler(SigTable[i]); } void ExceptionHandler::SetupHandler(int signo) { // We're storing pointers to the old signal action // structure, rather than copying the structure // because we can't count on the sa_mask field to // be scalar. struct sigaction *old_act = &old_actions_[signo]; if (sigaction(signo, &act_, old_act) < 0) return; } void ExceptionHandler::TeardownHandler(int signo) { TeardownHandler(signo, NULL); } void ExceptionHandler::TeardownHandler(int signo, struct sigaction *final_handler) { if (old_actions_[signo].sa_handler) { struct sigaction *act = &old_actions_[signo]; sigaction(signo, act, final_handler); memset(&old_actions_[signo], 0x0, sizeof(struct sigaction)); } } void ExceptionHandler::TeardownAllHandler() { for (size_t i = 0; i < sizeof(SigTable) / sizeof(SigTable[0]); ++i) { TeardownHandler(SigTable[i]); } } // static void ExceptionHandler::HandleException(int signo) { // In Linux, the context information about the signal is put on the stack of // the signal handler frame as value parameter. For some reasons, the // prototype of the handler doesn't declare this information as parameter, we // will do it by hand. It is the second parameter above the signal number. // However, if we are being called by another signal handler passing the // signal up the chain, then we may not have this random extra parameter, // so we may have to walk the stack to find it. We do the actual work // on another thread, where it's a little safer, but we want the ebp // from this frame to find it. uintptr_t current_ebp = 0; asm volatile ("movl %%ebp, %0" :"=m"(current_ebp)); pthread_mutex_lock(&handler_stack_mutex_); ExceptionHandler *current_handler = handler_stack_->at(handler_stack_->size() - ++handler_stack_index_); pthread_mutex_unlock(&handler_stack_mutex_); // Restore original handler. struct sigaction old_action; current_handler->TeardownHandler(signo, &old_action); struct sigcontext *sig_ctx = NULL; if (current_handler->InternalWriteMinidump(signo, current_ebp, &sig_ctx)) { // Fully handled this exception, safe to exit. exit(EXIT_FAILURE); } else { // Exception not fully handled, will call the next handler in stack to // process it. if (old_action.sa_handler != NULL && sig_ctx != NULL) { // Have our own typedef, because of the comment above w.r.t signal // context on the stack typedef void (*SignalHandler)(int signo, struct sigcontext); SignalHandler old_handler = reinterpret_cast(old_action.sa_handler); sigset_t old_set; // Use SIG_BLOCK here because we don't want to unblock a signal // that the signal handler we're currently in needs to block sigprocmask(SIG_BLOCK, &old_action.sa_mask, &old_set); old_handler(signo, *sig_ctx); sigprocmask(SIG_SETMASK, &old_set, NULL); } } pthread_mutex_lock(&handler_stack_mutex_); current_handler->SetupHandler(signo); --handler_stack_index_; // All the handlers in stack have been invoked to handle the exception, // normally the process should be terminated and should not reach here. // In case we got here, ask the OS to handle it to avoid endless loop, // normally the OS will generate a core and termiate the process. This // may be desired to debug the program. if (handler_stack_index_ == 0) signal(signo, SIG_DFL); pthread_mutex_unlock(&handler_stack_mutex_); } bool ExceptionHandler::InternalWriteMinidump(int signo, uintptr_t sighandler_ebp, struct sigcontext **sig_ctx) { if (filter_ && !filter_(callback_context_)) return false; bool success = false; // Block all the signals we want to process when writting minidump. // We don't want it to be interrupted. sigset_t sig_blocked, sig_old; bool blocked = true; sigfillset(&sig_blocked); for (size_t i = 0; i < sizeof(SigTable) / sizeof(SigTable[0]); ++i) sigdelset(&sig_blocked, SigTable[i]); if (sigprocmask(SIG_BLOCK, &sig_blocked, &sig_old) != 0) { blocked = false; fprintf(stderr, "google_breakpad::ExceptionHandler::HandleException: " "failed to block signals.\n"); } success = minidump_generator_.WriteMinidumpToFile( next_minidump_path_c_, signo, sighandler_ebp, sig_ctx); // Unblock the signals. if (blocked) { sigprocmask(SIG_SETMASK, &sig_old, NULL); } if (callback_) success = callback_(dump_path_c_, next_minidump_id_c_, callback_context_, success); return success; } void ExceptionHandler::UpdateNextID() { GUID guid; char guid_str[kGUIDStringLength + 1]; if (CreateGUID(&guid) && GUIDToString(&guid, guid_str, sizeof(guid_str))) { next_minidump_id_ = guid_str; next_minidump_id_c_ = next_minidump_id_.c_str(); char minidump_path[PATH_MAX]; snprintf(minidump_path, sizeof(minidump_path), "%s/%s.dmp", dump_path_c_, guid_str); next_minidump_path_ = minidump_path; next_minidump_path_c_ = next_minidump_path_.c_str(); } } } // namespace google_breakpad