// Copyright (c) 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: Alfred Peng #include #include #include #include #include #include #include #include "client/solaris/handler/exception_handler.h" #include "common/solaris/guid_creator.h" #include "common/solaris/message_output.h" #include "google_breakpad/common/minidump_format.h" namespace google_breakpad { // Signals that we are interested. static const int kSigTable[] = { SIGSEGV, SIGABRT, SIGFPE, SIGILL, SIGBUS }; std::vector *ExceptionHandler::handler_stack_ = NULL; int ExceptionHandler::handler_stack_index_ = 0; pthread_mutex_t ExceptionHandler::handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER; ExceptionHandler::ExceptionHandler(const string &dump_path, FilterCallback filter, MinidumpCallback callback, void *callback_context, bool install_handler) : filter_(filter), callback_(callback), callback_context_(callback_context), dump_path_(), installed_handler_(install_handler) { set_dump_path(dump_path); if (install_handler) { SetupHandler(); } if (install_handler) { pthread_mutex_lock(&handler_stack_mutex_); if (handler_stack_ == NULL) handler_stack_ = new std::vector; handler_stack_->push_back(this); pthread_mutex_unlock(&handler_stack_mutex_); } } ExceptionHandler::~ExceptionHandler() { TeardownAllHandlers(); pthread_mutex_lock(&handler_stack_mutex_); if (handler_stack_->back() == this) { handler_stack_->pop_back(); } else { print_message1(2, "warning: removing Breakpad handler out of order\n"); for (std::vector::iterator iterator = handler_stack_->begin(); iterator != handler_stack_->end(); ++iterator) { if (*iterator == this) { handler_stack_->erase(iterator); } } } if (handler_stack_->empty()) { // When destroying the last ExceptionHandler that installed a handler, // clean up the handler stack. delete handler_stack_; handler_stack_ = NULL; } pthread_mutex_unlock(&handler_stack_mutex_); } bool ExceptionHandler::WriteMinidump() { return InternalWriteMinidump(0, 0, NULL); } // static bool ExceptionHandler::WriteMinidump(const string &dump_path, MinidumpCallback callback, void *callback_context) { ExceptionHandler handler(dump_path, NULL, callback, callback_context, false); return handler.InternalWriteMinidump(0, 0, NULL); } void ExceptionHandler::SetupHandler() { // Signal on a different stack to avoid using the stack // of the crashing lwp. struct sigaltstack sig_stack; sig_stack.ss_sp = malloc(MINSIGSTKSZ); if (sig_stack.ss_sp == NULL) return; sig_stack.ss_size = MINSIGSTKSZ; sig_stack.ss_flags = 0; if (sigaltstack(&sig_stack, NULL) < 0) return; for (size_t i = 0; i < sizeof(kSigTable) / sizeof(kSigTable[0]); ++i) SetupHandler(kSigTable[i]); } void ExceptionHandler::SetupHandler(int signo) { struct sigaction act, old_act; act.sa_handler = HandleException; act.sa_flags = SA_ONSTACK; if (sigaction(signo, &act, &old_act) < 0) return; old_handlers_[signo] = old_act.sa_handler; } void ExceptionHandler::TeardownHandler(int signo) { if (old_handlers_.find(signo) != old_handlers_.end()) { struct sigaction act; act.sa_handler = old_handlers_[signo]; act.sa_flags = 0; sigaction(signo, &act, 0); } } void ExceptionHandler::TeardownAllHandlers() { for (size_t i = 0; i < sizeof(kSigTable) / sizeof(kSigTable[0]); ++i) { TeardownHandler(kSigTable[i]); } } // static void ExceptionHandler::HandleException(int signo) { //void ExceptionHandler::HandleException(int signo, siginfo_t *sip, ucontext_t *sig_ctx) { // The context information about the signal is put on the stack of // the signal handler frame as value parameter. For some reasons, the // prototype of the handler doesn't declare this information as parameter, we // will do it by hand. The stack layout for a signal handler frame is here: // http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/libproc/common/Pstack.c#81 // // However, if we are being called by another signal handler passing the // signal up the chain, then we may not have this random extra parameter, // so we may have to walk the stack to find it. We do the actual work // on another thread, where it's a little safer, but we want the ebp // from this frame to find it. uintptr_t current_ebp = (uintptr_t)_getfp(); pthread_mutex_lock(&handler_stack_mutex_); ExceptionHandler *current_handler = handler_stack_->at(handler_stack_->size() - ++handler_stack_index_); pthread_mutex_unlock(&handler_stack_mutex_); // Restore original handler. current_handler->TeardownHandler(signo); ucontext_t *sig_ctx = NULL; if (current_handler->InternalWriteMinidump(signo, current_ebp, &sig_ctx)) { // if (current_handler->InternalWriteMinidump(signo, &sig_ctx)) { // Fully handled this exception, safe to exit. exit(EXIT_FAILURE); } else { // Exception not fully handled, will call the next handler in stack to // process it. typedef void (*SignalHandler)(int signo); SignalHandler old_handler = reinterpret_cast(current_handler->old_handlers_[signo]); if (old_handler != NULL) old_handler(signo); } pthread_mutex_lock(&handler_stack_mutex_); current_handler->SetupHandler(signo); --handler_stack_index_; // All the handlers in stack have been invoked to handle the exception, // normally the process should be terminated and should not reach here. // In case we got here, ask the OS to handle it to avoid endless loop, // normally the OS will generate a core and termiate the process. This // may be desired to debug the program. if (handler_stack_index_ == 0) signal(signo, SIG_DFL); pthread_mutex_unlock(&handler_stack_mutex_); } bool ExceptionHandler::InternalWriteMinidump(int signo, uintptr_t sighandler_ebp, ucontext_t **sig_ctx) { if (filter_ && !filter_(callback_context_)) return false; bool success = false; GUID guid; char guid_str[kGUIDStringLength + 1]; if (CreateGUID(&guid) && GUIDToString(&guid, guid_str, sizeof(guid_str))) { char minidump_path[PATH_MAX]; snprintf(minidump_path, sizeof(minidump_path), "%s/%s.dmp", dump_path_c_, guid_str); // Block all the signals we want to process when writing minidump. // We don't want it to be interrupted. sigset_t sig_blocked, sig_old; bool blocked = true; sigfillset(&sig_blocked); for (size_t i = 0; i < sizeof(kSigTable) / sizeof(kSigTable[0]); ++i) sigdelset(&sig_blocked, kSigTable[i]); if (sigprocmask(SIG_BLOCK, &sig_blocked, &sig_old) != 0) { blocked = false; print_message1(2, "HandleException: failed to block signals.\n"); } success = minidump_generator_.WriteMinidumpToFile( minidump_path, signo, sighandler_ebp, sig_ctx); // Unblock the signals. if (blocked) sigprocmask(SIG_SETMASK, &sig_old, &sig_old); if (callback_) success = callback_(dump_path_c_, guid_str, callback_context_, success); } return success; } } // namespace google_breakpad