// Copyright (c) 2010, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Original author: Jim Blandy // dwarf2reader_cfi_unittest.cc: Unit tests for dwarf2reader::CallFrameInfo #include #include #include #include // The '.eh_frame' format, used by the Linux C++ ABI for exception // handling, is poorly specified. To help test our support for .eh_frame, // if you #define WRITE_ELF while compiling this file, and add the // 'include' directory from the binutils, gcc, or gdb source tree to the // #include path, then each test that calls the // PERHAPS_WRITE_DEBUG_FRAME_FILE or PERHAPS_WRITE_EH_FRAME_FILE will write // an ELF file containing a .debug_frame or .eh_frame section; you can then // use tools like readelf to examine the test data, and check the tools' // interpretation against the test's intentions. Each ELF file is named // "cfitest-TEST", where TEST identifies the particular test. #ifdef WRITE_ELF #include #include #include extern "C" { // To compile with WRITE_ELF, you should add the 'include' directory // of the binutils, gcc, or gdb source tree to your #include path; // that directory contains this header. #include "elf/common.h" } #endif #include "breakpad_googletest_includes.h" #include "common/dwarf/bytereader-inl.h" #include "common/dwarf/cfi_assembler.h" #include "common/dwarf/dwarf2reader.h" #include "common/using_std_string.h" #include "google_breakpad/common/breakpad_types.h" using google_breakpad::CFISection; using google_breakpad::test_assembler::Label; using google_breakpad::test_assembler::kBigEndian; using google_breakpad::test_assembler::kLittleEndian; using google_breakpad::test_assembler::Section; using dwarf2reader::DwarfPointerEncoding; using dwarf2reader::ENDIANNESS_BIG; using dwarf2reader::ENDIANNESS_LITTLE; using dwarf2reader::ByteReader; using dwarf2reader::CallFrameInfo; using std::vector; using testing::InSequence; using testing::Return; using testing::Sequence; using testing::Test; using testing::_; #ifdef WRITE_ELF void WriteELFFrameSection(const char *filename, const char *section_name, const CFISection& section); #define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section) \ WriteELFFrameSection("cfitest-" name, ".debug_frame", section); #define PERHAPS_WRITE_EH_FRAME_FILE(name, section) \ WriteELFFrameSection("cfitest-" name, ".eh_frame", section); #else #define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section) #define PERHAPS_WRITE_EH_FRAME_FILE(name, section) #endif class MockCallFrameInfoHandler: public CallFrameInfo::Handler { public: MOCK_METHOD6(Entry, bool(size_t offset, uint64_t address, uint64_t length, uint8_t version, const string& augmentation, unsigned return_address)); MOCK_METHOD2(UndefinedRule, bool(uint64_t address, int reg)); MOCK_METHOD2(SameValueRule, bool(uint64_t address, int reg)); MOCK_METHOD4(OffsetRule, bool(uint64_t address, int reg, int base_register, long offset)); MOCK_METHOD4(ValOffsetRule, bool(uint64_t address, int reg, int base_register, long offset)); MOCK_METHOD3(RegisterRule, bool(uint64_t address, int reg, int base_register)); MOCK_METHOD3(ExpressionRule, bool(uint64_t address, int reg, const string& expression)); MOCK_METHOD3(ValExpressionRule, bool(uint64_t address, int reg, const string& expression)); MOCK_METHOD0(End, bool()); MOCK_METHOD2(PersonalityRoutine, bool(uint64_t address, bool indirect)); MOCK_METHOD2(LanguageSpecificDataArea, bool(uint64_t address, bool indirect)); MOCK_METHOD0(SignalHandler, bool()); }; class MockCallFrameErrorReporter: public CallFrameInfo::Reporter { public: MockCallFrameErrorReporter() : Reporter("mock filename", "mock section") { } MOCK_METHOD2(Incomplete, void(uint64_t, CallFrameInfo::EntryKind)); MOCK_METHOD1(EarlyEHTerminator, void(uint64_t)); MOCK_METHOD2(CIEPointerOutOfRange, void(uint64_t, uint64_t)); MOCK_METHOD2(BadCIEId, void(uint64_t, uint64_t)); MOCK_METHOD2(UnexpectedAddressSize, void(uint64_t, uint8_t)); MOCK_METHOD2(UnexpectedSegmentSize, void(uint64_t, uint8_t)); MOCK_METHOD2(UnrecognizedVersion, void(uint64_t, int version)); MOCK_METHOD2(UnrecognizedAugmentation, void(uint64_t, const string&)); MOCK_METHOD2(InvalidPointerEncoding, void(uint64_t, uint8_t)); MOCK_METHOD2(UnusablePointerEncoding, void(uint64_t, uint8_t)); MOCK_METHOD2(RestoreInCIE, void(uint64_t, uint64_t)); MOCK_METHOD3(BadInstruction, void(uint64_t, CallFrameInfo::EntryKind, uint64_t)); MOCK_METHOD3(NoCFARule, void(uint64_t, CallFrameInfo::EntryKind, uint64_t)); MOCK_METHOD3(EmptyStateStack, void(uint64_t, CallFrameInfo::EntryKind, uint64_t)); }; struct CFIFixture { enum { kCFARegister = CallFrameInfo::Handler::kCFARegister }; CFIFixture() { // Default expectations for the data handler. // // - Leave Entry and End without expectations, as it's probably a // good idea to set those explicitly in each test. // // - Expect the *Rule functions to not be called, // so that each test can simply list the calls they expect. // // I gather I could use StrictMock for this, but the manual seems // to suggest using that only as a last resort, and this isn't so // bad. EXPECT_CALL(handler, UndefinedRule(_, _)).Times(0); EXPECT_CALL(handler, SameValueRule(_, _)).Times(0); EXPECT_CALL(handler, OffsetRule(_, _, _, _)).Times(0); EXPECT_CALL(handler, ValOffsetRule(_, _, _, _)).Times(0); EXPECT_CALL(handler, RegisterRule(_, _, _)).Times(0); EXPECT_CALL(handler, ExpressionRule(_, _, _)).Times(0); EXPECT_CALL(handler, ValExpressionRule(_, _, _)).Times(0); EXPECT_CALL(handler, PersonalityRoutine(_, _)).Times(0); EXPECT_CALL(handler, LanguageSpecificDataArea(_, _)).Times(0); EXPECT_CALL(handler, SignalHandler()).Times(0); // Default expectations for the error/warning reporer. EXPECT_CALL(reporter, Incomplete(_, _)).Times(0); EXPECT_CALL(reporter, EarlyEHTerminator(_)).Times(0); EXPECT_CALL(reporter, CIEPointerOutOfRange(_, _)).Times(0); EXPECT_CALL(reporter, BadCIEId(_, _)).Times(0); EXPECT_CALL(reporter, UnrecognizedVersion(_, _)).Times(0); EXPECT_CALL(reporter, UnrecognizedAugmentation(_, _)).Times(0); EXPECT_CALL(reporter, InvalidPointerEncoding(_, _)).Times(0); EXPECT_CALL(reporter, UnusablePointerEncoding(_, _)).Times(0); EXPECT_CALL(reporter, RestoreInCIE(_, _)).Times(0); EXPECT_CALL(reporter, BadInstruction(_, _, _)).Times(0); EXPECT_CALL(reporter, NoCFARule(_, _, _)).Times(0); EXPECT_CALL(reporter, EmptyStateStack(_, _, _)).Times(0); } MockCallFrameInfoHandler handler; MockCallFrameErrorReporter reporter; }; class CFI: public CFIFixture, public Test { }; TEST_F(CFI, EmptyRegion) { EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); static const uint8_t data[] = { 42 }; ByteReader byte_reader(ENDIANNESS_BIG); CallFrameInfo parser(data, 0, &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } TEST_F(CFI, IncompleteLength32) { CFISection section(kBigEndian, 8); section // Not even long enough for an initial length. .D16(0xa0f) // Padding to keep valgrind happy. We subtract these off when we // construct the parser. .D16(0); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(8); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size() - 2, &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(CFI, IncompleteLength64) { CFISection section(kLittleEndian, 4); section // An incomplete 64-bit DWARF initial length. .D32(0xffffffff).D32(0x71fbaec2) // Padding to keep valgrind happy. We subtract these off when we // construct the parser. .D32(0); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_LITTLE); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size() - 4, &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(CFI, IncompleteId32) { CFISection section(kBigEndian, 8); section .D32(3) // Initial length, not long enough for id .D8(0xd7).D8(0xe5).D8(0xf1) // incomplete id .CIEHeader(8727, 3983, 8889, 3, "") .FinishEntry(); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(8); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(CFI, BadId32) { CFISection section(kBigEndian, 8); section .D32(0x100) // Initial length .D32(0xe802fade) // bogus ID .Append(0x100 - 4, 0x42); // make the length true section .CIEHeader(1672, 9872, 8529, 3, "") .FinishEntry(); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, CIEPointerOutOfRange(_, 0xe802fade)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(8); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } // A lone CIE shouldn't cause any handler calls. TEST_F(CFI, SingleCIE) { CFISection section(kLittleEndian, 4); section.CIEHeader(0xffe799a8, 0x3398dcdd, 0x6e9683de, 3, ""); section.Append(10, dwarf2reader::DW_CFA_nop); section.FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("SingleCIE", section); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_LITTLE); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // One FDE, one CIE. TEST_F(CFI, OneFDE) { CFISection section(kBigEndian, 4); Label cie; section .Mark(&cie) .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "") .FinishEntry() .FDEHeader(cie, 0x7714740d, 0x3d5a10cd) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("OneFDE", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x7714740d, 0x3d5a10cd, 3, "", 0x6b6efb87)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // Two FDEs share a CIE. TEST_F(CFI, TwoFDEsOneCIE) { CFISection section(kBigEndian, 4); Label cie; section // First FDE. readelf complains about this one because it makes // a forward reference to its CIE. .FDEHeader(cie, 0xa42744df, 0xa3b42121) .FinishEntry() // CIE. .Mark(&cie) .CIEHeader(0x04f7dc7b, 0x3d00c05f, 0xbd43cb59, 3, "") .FinishEntry() // Second FDE. .FDEHeader(cie, 0x6057d391, 0x700f608d) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsOneCIE", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0xa42744df, 0xa3b42121, 3, "", 0xbd43cb59)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } { InSequence s; EXPECT_CALL(handler, Entry(_, 0x6057d391, 0x700f608d, 3, "", 0xbd43cb59)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // Two FDEs, two CIEs. TEST_F(CFI, TwoFDEsTwoCIEs) { CFISection section(kLittleEndian, 8); Label cie1, cie2; section // First CIE. .Mark(&cie1) .CIEHeader(0x694d5d45, 0x4233221b, 0xbf45e65a, 3, "") .FinishEntry() // First FDE which cites second CIE. readelf complains about // this one because it makes a forward reference to its CIE. .FDEHeader(cie2, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL) .FinishEntry() // Second FDE, which cites first CIE. .FDEHeader(cie1, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL) .FinishEntry() // Second CIE. .Mark(&cie2) .CIEHeader(0xfba3fad7, 0x6287e1fd, 0x61d2c581, 2, "") .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsTwoCIEs", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL, 2, "", 0x61d2c581)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } { InSequence s; EXPECT_CALL(handler, Entry(_, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL, 3, "", 0xbf45e65a)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_LITTLE); byte_reader.SetAddressSize(8); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // An FDE whose CIE specifies a version we don't recognize. TEST_F(CFI, BadVersion) { CFISection section(kBigEndian, 4); Label cie1, cie2; section .Mark(&cie1) .CIEHeader(0xca878cf0, 0x7698ec04, 0x7b616f54, 0x52, "") .FinishEntry() // We should skip this entry, as its CIE specifies a version we // don't recognize. .FDEHeader(cie1, 0x08852292, 0x2204004a) .FinishEntry() // Despite the above, we should visit this entry. .Mark(&cie2) .CIEHeader(0x7c3ae7c9, 0xb9b9a512, 0x96cb3264, 3, "") .FinishEntry() .FDEHeader(cie2, 0x2094735a, 0x6e875501) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("BadVersion", section); EXPECT_CALL(reporter, UnrecognizedVersion(_, 0x52)) .WillOnce(Return()); { InSequence s; // We should see no mention of the first FDE, but we should get // a call to Entry for the second. EXPECT_CALL(handler, Entry(_, 0x2094735a, 0x6e875501, 3, "", 0x96cb3264)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()) .WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } // An FDE whose CIE specifies an augmentation we don't recognize. TEST_F(CFI, BadAugmentation) { CFISection section(kBigEndian, 4); Label cie1, cie2; section .Mark(&cie1) .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "spaniels!") .FinishEntry() // We should skip this entry, as its CIE specifies an // augmentation we don't recognize. .FDEHeader(cie1, 0x7714740d, 0x3d5a10cd) .FinishEntry() // Despite the above, we should visit this entry. .Mark(&cie2) .CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 3, "") .FinishEntry() .FDEHeader(cie2, 0x7bf0fda0, 0xcbcd28d8) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("BadAugmentation", section); EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "spaniels!")) .WillOnce(Return()); { InSequence s; // We should see no mention of the first FDE, but we should get // a call to Entry for the second. EXPECT_CALL(handler, Entry(_, 0x7bf0fda0, 0xcbcd28d8, 3, "", 0xf2f519b2)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()) .WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } // The return address column field is a byte in CFI version 1 // (DWARF2), but a ULEB128 value in version 3 (DWARF3). TEST_F(CFI, CIEVersion1ReturnColumn) { CFISection section(kBigEndian, 4); Label cie; section // CIE, using the version 1 format: return column is a ubyte. .Mark(&cie) // Use a value for the return column that is parsed differently // as a ubyte and as a ULEB128. .CIEHeader(0xbcdea24f, 0x5be28286, 0x9f, 1, "") .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0xb8d347b5, 0x825e55dc) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion1ReturnColumn", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0xb8d347b5, 0x825e55dc, 1, "", 0x9f)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // The return address column field is a byte in CFI version 1 // (DWARF2), but a ULEB128 value in version 3 (DWARF3). TEST_F(CFI, CIEVersion3ReturnColumn) { CFISection section(kBigEndian, 4); Label cie; section // CIE, using the version 3 format: return column is a ULEB128. .Mark(&cie) // Use a value for the return column that is parsed differently // as a ubyte and as a ULEB128. .CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 3, "") .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0x86763f2b, 0x2a66dc23) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 3, "", 0x89)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); byte_reader.SetAddressSize(4); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } TEST_F(CFI, CIEVersion4AdditionalFields) { CFISection section(kBigEndian, 8); Label cie; section .Mark(&cie) // CIE version 4 with expected address (64bit) and segment size. .CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 4, "", true, 8, 0) .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0x86763f2b, 0x2a66dc23) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 4, "", 0x89)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } TEST_F(CFI, CIEVersion4AdditionalFields32BitAddress) { CFISection section(kBigEndian, 4); Label cie; section .Mark(&cie) // CIE version 4 with expected address (32bit) and segment size. .CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 4, "", true, 4, 0) .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0x86763f2b, 0x2a66dc23) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 4, "", 0x89)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } TEST_F(CFI, CIEVersion4AdditionalFieldsUnexpectedAddressSize) { CFISection section(kBigEndian, 4); Label cie; section .Mark(&cie) // Unexpected address size. .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 4, "", true, 3, 0) .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0x86763f2b, 0x2a66dc23) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("AdditionalFieldsUnexpectedAddress", section); EXPECT_CALL(reporter, UnexpectedAddressSize(_, 3)) .WillOnce(Return()); string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(CFI, CIEVersion4AdditionalFieldsUnexpectedSegmentSize) { CFISection section(kBigEndian, 8); Label cie; section .Mark(&cie) .CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 4, "", true, 8, 7) .FinishEntry() .FDEHeader(cie, 0x7bf0fda0, 0xcbcd28d8) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("AdditionalFieldsUnexpectedSegment", section); EXPECT_CALL(reporter, UnexpectedSegmentSize(_, 7)) .WillOnce(Return()); string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader byte_reader(ENDIANNESS_BIG); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } struct CFIInsnFixture: public CFIFixture { CFIInsnFixture() : CFIFixture() { data_factor = 0xb6f; return_register = 0x9be1ed9f; version = 3; cfa_base_register = 0x383a3aa; cfa_offset = 0xf748; } // Prepare SECTION to receive FDE instructions. // // - Append a stock CIE header that establishes the fixture's // code_factor, data_factor, return_register, version, and // augmentation values. // - Have the CIE set up a CFA rule using cfa_base_register and // cfa_offset. // - Append a stock FDE header, referring to the above CIE, for the // fde_size bytes at fde_start. Choose fde_start and fde_size // appropriately for the section's address size. // - Set appropriate expectations on handler in sequence s for the // frame description entry and the CIE's CFA rule. // // On return, SECTION is ready to have FDE instructions appended to // it, and its FinishEntry member called. void StockCIEAndFDE(CFISection *section) { // Choose appropriate constants for our address size. if (section->AddressSize() == 4) { fde_start = 0xc628ecfbU; fde_size = 0x5dee04a2; code_factor = 0x60b; } else { assert(section->AddressSize() == 8); fde_start = 0x0005c57ce7806bd3ULL; fde_size = 0x2699521b5e333100ULL; code_factor = 0x01008e32855274a8ULL; } // Create the CIE. (*section) .Mark(&cie_label) .CIEHeader(code_factor, data_factor, return_register, version, "") .D8(dwarf2reader::DW_CFA_def_cfa) .ULEB128(cfa_base_register) .ULEB128(cfa_offset) .FinishEntry(); // Create the FDE. section->FDEHeader(cie_label, fde_start, fde_size); // Expect an Entry call for the FDE and a ValOffsetRule call for the // CIE's CFA rule. EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, cfa_offset)) .InSequence(s) .WillOnce(Return(true)); } // Run the contents of SECTION through a CallFrameInfo parser, // expecting parser.Start to return SUCCEEDS void ParseSection(CFISection *section, bool succeeds = true) { string contents; EXPECT_TRUE(section->GetContents(&contents)); dwarf2reader::Endianness endianness; if (section->endianness() == kBigEndian) endianness = ENDIANNESS_BIG; else { assert(section->endianness() == kLittleEndian); endianness = ENDIANNESS_LITTLE; } ByteReader byte_reader(endianness); byte_reader.SetAddressSize(section->AddressSize()); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter); if (succeeds) EXPECT_TRUE(parser.Start()); else EXPECT_FALSE(parser.Start()); } Label cie_label; Sequence s; uint64_t code_factor; int data_factor; unsigned return_register; unsigned version; unsigned cfa_base_register; int cfa_offset; uint64_t fde_start, fde_size; }; class CFIInsn: public CFIInsnFixture, public Test { }; TEST_F(CFIInsn, DW_CFA_set_loc) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_set_loc).D32(0xb1ee3e7a) // Use DW_CFA_def_cfa to force a handler call that we can use to // check the effect of the DW_CFA_set_loc. .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x4defb431).ULEB128(0x6d17b0ee) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_set_loc", section); EXPECT_CALL(handler, ValOffsetRule(0xb1ee3e7a, kCFARegister, 0x4defb431, 0x6d17b0ee)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_advance_loc) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_advance_loc | 0x2a) // Use DW_CFA_def_cfa to force a handler call that we can use to // check the effect of the DW_CFA_advance_loc. .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x5bbb3715).ULEB128(0x0186c7bf) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc", section); EXPECT_CALL(handler, ValOffsetRule(fde_start + 0x2a * code_factor, kCFARegister, 0x5bbb3715, 0x0186c7bf)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_advance_loc1) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_advance_loc1).D8(0xd8) .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x69d5696a).ULEB128(0x1eb7fc93) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc1", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0xd8 * code_factor), kCFARegister, 0x69d5696a, 0x1eb7fc93)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_advance_loc2) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_advance_loc2).D16(0x3adb) .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x3a368bed).ULEB128(0x3194ee37) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc2", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x3adb * code_factor), kCFARegister, 0x3a368bed, 0x3194ee37)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_advance_loc4) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_advance_loc4).D32(0x15813c88) .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x135270c5).ULEB128(0x24bad7cb) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc4", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x15813c88ULL * code_factor), kCFARegister, 0x135270c5, 0x24bad7cb)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_MIPS_advance_loc8) { code_factor = 0x2d; CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_MIPS_advance_loc8).D64(0x3c4f3945b92c14ULL) .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0xe17ed602).ULEB128(0x3d162e7f) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc8", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x3c4f3945b92c14ULL * code_factor), kCFARegister, 0xe17ed602, 0x3d162e7f)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_def_cfa) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x4e363a85).ULEB128(0x815f9aa7) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_def_cfa", section); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x4e363a85, 0x815f9aa7)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_def_cfa_sf) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_sf).ULEB128(0x8ccb32b7).LEB128(0x9ea) .D8(dwarf2reader::DW_CFA_def_cfa_sf).ULEB128(0x9b40f5da).LEB128(-0x40a2) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x8ccb32b7, 0x9ea * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x9b40f5da, -0x40a2 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_def_cfa_register) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_register).ULEB128(0x3e7e9363) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x3e7e9363, cfa_offset)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } // DW_CFA_def_cfa_register should have no effect when applied to a // non-base/offset rule. TEST_F(CFIInsn, DW_CFA_def_cfa_registerBadRule) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_expression).Block("needle in a haystack") .D8(dwarf2reader::DW_CFA_def_cfa_register).ULEB128(0xf1b49e49) .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, "needle in a haystack")) .WillRepeatedly(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_def_cfa_offset) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, 0x1e8e3b9b)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_def_cfa_offset_sf) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_offset_sf).LEB128(0x970) .D8(dwarf2reader::DW_CFA_def_cfa_offset_sf).LEB128(-0x2cd) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, 0x970 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, -0x2cd * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } // DW_CFA_def_cfa_offset should have no effect when applied to a // non-base/offset rule. TEST_F(CFIInsn, DW_CFA_def_cfa_offsetBadRule) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_expression).Block("six ways to Sunday") .D8(dwarf2reader::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b) .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, "six ways to Sunday")) .WillRepeatedly(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_def_cfa_expression) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_def_cfa_expression).Block("eating crow") .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, "eating crow")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_undefined) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x300ce45d) .FinishEntry(); EXPECT_CALL(handler, UndefinedRule(fde_start, 0x300ce45d)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_same_value) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_same_value).ULEB128(0x3865a760) .FinishEntry(); EXPECT_CALL(handler, SameValueRule(fde_start, 0x3865a760)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_offset) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_offset | 0x2c).ULEB128(0x9f6) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x2c, kCFARegister, 0x9f6 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_offset_extended) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_offset_extended).ULEB128(0x402b).ULEB128(0xb48) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x402b, kCFARegister, 0xb48 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_offset_extended_sf) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_offset_extended_sf) .ULEB128(0x997c23ee).LEB128(0x2d00) .D8(dwarf2reader::DW_CFA_offset_extended_sf) .ULEB128(0x9519eb82).LEB128(-0xa77) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x997c23ee, kCFARegister, 0x2d00 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start, 0x9519eb82, kCFARegister, -0xa77 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_val_offset) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x623562fe).ULEB128(0x673) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x623562fe, kCFARegister, 0x673 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_val_offset_sf) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_offset_sf).ULEB128(0x6f4f).LEB128(0xaab) .D8(dwarf2reader::DW_CFA_val_offset_sf).ULEB128(0x2483).LEB128(-0x8a2) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x6f4f, kCFARegister, 0xaab * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2483, kCFARegister, -0x8a2 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_register) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_register).ULEB128(0x278d18f9).ULEB128(0x1a684414) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0x278d18f9, 0x1a684414)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_expression) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_expression).ULEB128(0xa1619fb2) .Block("plus ça change, plus c'est la même chose") .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0xa1619fb2, "plus ça change, plus c'est la même chose")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_val_expression) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0xc5e4a9e3) .Block("he who has the gold makes the rules") .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xc5e4a9e3, "he who has the gold makes the rules")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_restore) { CFISection section(kLittleEndian, 8); code_factor = 0x01bd188a9b1fa083ULL; data_factor = -0x1ac8; return_register = 0x8c35b049; version = 2; fde_start = 0x2d70fe998298bbb1ULL; fde_size = 0x46ccc2e63cf0b108ULL; Label cie; section .Mark(&cie) .CIEHeader(code_factor, data_factor, return_register, version, "") // Provide a CFA rule, because register rules require them. .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x6ca1d50e).ULEB128(0x372e38e8) // Provide an offset(N) rule for register 0x3c. .D8(dwarf2reader::DW_CFA_offset | 0x3c).ULEB128(0xb348) .FinishEntry() // In the FDE... .FDEHeader(cie, fde_start, fde_size) // At a second address, provide a new offset(N) rule for register 0x3c. .D8(dwarf2reader::DW_CFA_advance_loc | 0x13) .D8(dwarf2reader::DW_CFA_offset | 0x3c).ULEB128(0x9a50) // At a third address, restore the original rule for register 0x3c. .D8(dwarf2reader::DW_CFA_advance_loc | 0x01) .D8(dwarf2reader::DW_CFA_restore | 0x3c) .FinishEntry(); { InSequence s; EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .WillOnce(Return(true)); // CIE's CFA rule. EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x6ca1d50e, 0x372e38e8)) .WillOnce(Return(true)); // CIE's rule for register 0x3c. EXPECT_CALL(handler, OffsetRule(fde_start, 0x3c, kCFARegister, 0xb348 * data_factor)) .WillOnce(Return(true)); // FDE's rule for register 0x3c. EXPECT_CALL(handler, OffsetRule(fde_start + 0x13 * code_factor, 0x3c, kCFARegister, 0x9a50 * data_factor)) .WillOnce(Return(true)); // Restore CIE's rule for register 0x3c. EXPECT_CALL(handler, OffsetRule(fde_start + (0x13 + 0x01) * code_factor, 0x3c, kCFARegister, 0xb348 * data_factor)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_restoreNoRule) { CFISection section(kBigEndian, 4); code_factor = 0x005f78143c1c3b82ULL; data_factor = 0x25d0; return_register = 0xe8; version = 1; fde_start = 0x4062e30f; fde_size = 0x5302a389; Label cie; section .Mark(&cie) .CIEHeader(code_factor, data_factor, return_register, version, "") // Provide a CFA rule, because register rules require them. .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x470aa334).ULEB128(0x099ef127) .FinishEntry() // In the FDE... .FDEHeader(cie, fde_start, fde_size) // At a second address, provide an offset(N) rule for register 0x2c. .D8(dwarf2reader::DW_CFA_advance_loc | 0x7) .D8(dwarf2reader::DW_CFA_offset | 0x2c).ULEB128(0x1f47) // At a third address, restore the (missing) CIE rule for register 0x2c. .D8(dwarf2reader::DW_CFA_advance_loc | 0xb) .D8(dwarf2reader::DW_CFA_restore | 0x2c) .FinishEntry(); { InSequence s; EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .WillOnce(Return(true)); // CIE's CFA rule. EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x470aa334, 0x099ef127)) .WillOnce(Return(true)); // FDE's rule for register 0x2c. EXPECT_CALL(handler, OffsetRule(fde_start + 0x7 * code_factor, 0x2c, kCFARegister, 0x1f47 * data_factor)) .WillOnce(Return(true)); // Restore CIE's (missing) rule for register 0x2c. EXPECT_CALL(handler, SameValueRule(fde_start + (0x7 + 0xb) * code_factor, 0x2c)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_restore_extended) { CFISection section(kBigEndian, 4); code_factor = 0x126e; data_factor = -0xd8b; return_register = 0x77711787; version = 3; fde_start = 0x01f55a45; fde_size = 0x452adb80; Label cie; section .Mark(&cie) .CIEHeader(code_factor, data_factor, return_register, version, "", true /* dwarf64 */ ) // Provide a CFA rule, because register rules require them. .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x56fa0edd).ULEB128(0x097f78a5) // Provide an offset(N) rule for register 0x0f9b8a1c. .D8(dwarf2reader::DW_CFA_offset_extended) .ULEB128(0x0f9b8a1c).ULEB128(0xc979) .FinishEntry() // In the FDE... .FDEHeader(cie, fde_start, fde_size) // At a second address, provide a new offset(N) rule for reg 0x0f9b8a1c. .D8(dwarf2reader::DW_CFA_advance_loc | 0x3) .D8(dwarf2reader::DW_CFA_offset_extended) .ULEB128(0x0f9b8a1c).ULEB128(0x3b7b) // At a third address, restore the original rule for register 0x0f9b8a1c. .D8(dwarf2reader::DW_CFA_advance_loc | 0x04) .D8(dwarf2reader::DW_CFA_restore_extended).ULEB128(0x0f9b8a1c) .FinishEntry(); { InSequence s; EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .WillOnce(Return(true)); // CIE's CFA rule. EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x56fa0edd, 0x097f78a5)) .WillOnce(Return(true)); // CIE's rule for register 0x0f9b8a1c. EXPECT_CALL(handler, OffsetRule(fde_start, 0x0f9b8a1c, kCFARegister, 0xc979 * data_factor)) .WillOnce(Return(true)); // FDE's rule for register 0x0f9b8a1c. EXPECT_CALL(handler, OffsetRule(fde_start + 0x3 * code_factor, 0x0f9b8a1c, kCFARegister, 0x3b7b * data_factor)) .WillOnce(Return(true)); // Restore CIE's rule for register 0x0f9b8a1c. EXPECT_CALL(handler, OffsetRule(fde_start + (0x3 + 0x4) * code_factor, 0x0f9b8a1c, kCFARegister, 0xc979 * data_factor)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_remember_and_restore_state) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); // We create a state, save it, modify it, and then restore. We // refer to the state that is overridden the restore as the // "outgoing" state, and the restored state the "incoming" state. // // Register outgoing incoming expect // 1 offset(N) no rule new "same value" rule // 2 register(R) offset(N) report changed rule // 3 offset(N) offset(M) report changed offset // 4 offset(N) offset(N) no report // 5 offset(N) no rule new "same value" rule section // Create the "incoming" state, which we will save and later restore. .D8(dwarf2reader::DW_CFA_offset | 2).ULEB128(0x9806) .D8(dwarf2reader::DW_CFA_offset | 3).ULEB128(0x995d) .D8(dwarf2reader::DW_CFA_offset | 4).ULEB128(0x7055) .D8(dwarf2reader::DW_CFA_remember_state) // Advance to a new instruction; an implementation could legitimately // ignore all but the final rule for a given register at a given address. .D8(dwarf2reader::DW_CFA_advance_loc | 1) // Create the "outgoing" state, which we will discard. .D8(dwarf2reader::DW_CFA_offset | 1).ULEB128(0xea1a) .D8(dwarf2reader::DW_CFA_register).ULEB128(2).ULEB128(0x1d2a3767) .D8(dwarf2reader::DW_CFA_offset | 3).ULEB128(0xdd29) .D8(dwarf2reader::DW_CFA_offset | 5).ULEB128(0xf1ce) // At a third address, restore the incoming state. .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); uint64_t addr = fde_start; // Expect the incoming rules to be reported. EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 4, kCFARegister, 0x7055 * data_factor)) .InSequence(s).WillOnce(Return(true)); addr += code_factor; // After the save, we establish the outgoing rule set. EXPECT_CALL(handler, OffsetRule(addr, 1, kCFARegister, 0xea1a * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(addr, 2, 0x1d2a3767)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0xdd29 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 5, kCFARegister, 0xf1ce * data_factor)) .InSequence(s).WillOnce(Return(true)); addr += code_factor; // Finally, after the restore, expect to see the differences from // the outgoing to the incoming rules reported. EXPECT_CALL(handler, SameValueRule(addr, 1)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, SameValueRule(addr, 5)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } // Check that restoring a rule set reports changes to the CFA rule. TEST_F(CFIInsn, DW_CFA_remember_and_restore_stateCFA) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_def_cfa_offset).ULEB128(0x90481102) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, kCFARegister, cfa_base_register, 0x90481102)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor * 2, kCFARegister, cfa_base_register, cfa_offset)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_nop) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_nop) .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x3fb8d4f1).ULEB128(0x078dc67b) .D8(dwarf2reader::DW_CFA_nop) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x3fb8d4f1, 0x078dc67b)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_GNU_window_save) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_GNU_window_save) .FinishEntry(); // Don't include all the rules in any particular sequence. // The caller's %o0-%o7 have become the callee's %i0-%i7. This is // the GCC register numbering. for (int i = 8; i < 16; i++) EXPECT_CALL(handler, RegisterRule(fde_start, i, i + 16)) .WillOnce(Return(true)); // The caller's %l0-%l7 and %i0-%i7 have been saved at the top of // its frame. for (int i = 16; i < 32; i++) EXPECT_CALL(handler, OffsetRule(fde_start, i, kCFARegister, (i-16) * 4)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_GNU_args_size) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_GNU_args_size).ULEB128(0xeddfa520) // Verify that we see this, meaning we parsed the above properly. .D8(dwarf2reader::DW_CFA_offset | 0x23).ULEB128(0x269) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x23, kCFARegister, 0x269 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIInsn, DW_CFA_GNU_negative_offset_extended) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_GNU_negative_offset_extended) .ULEB128(0x430cc87a).ULEB128(0x613) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x430cc87a, kCFARegister, -0x613 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } // Three FDEs: skip the second TEST_F(CFIInsn, SkipFDE) { CFISection section(kBigEndian, 4); Label cie; section // CIE, used by all FDEs. .Mark(&cie) .CIEHeader(0x010269f2, 0x9177, 0xedca5849, 2, "") .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x42ed390b).ULEB128(0x98f43aad) .FinishEntry() // First FDE. .FDEHeader(cie, 0xa870ebdd, 0x60f6aa4) .D8(dwarf2reader::DW_CFA_register).ULEB128(0x3a860351).ULEB128(0x6c9a6bcf) .FinishEntry() // Second FDE. .FDEHeader(cie, 0xc534f7c0, 0xf6552e9, true /* dwarf64 */) .D8(dwarf2reader::DW_CFA_register).ULEB128(0x1b62c234).ULEB128(0x26586b18) .FinishEntry() // Third FDE. .FDEHeader(cie, 0xf681cfc8, 0x7e4594e) .D8(dwarf2reader::DW_CFA_register).ULEB128(0x26c53934).ULEB128(0x18eeb8a4) .FinishEntry(); { InSequence s; // Process the first FDE. EXPECT_CALL(handler, Entry(_, 0xa870ebdd, 0x60f6aa4, 2, "", 0xedca5849)) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0xa870ebdd, kCFARegister, 0x42ed390b, 0x98f43aad)) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(0xa870ebdd, 0x3a860351, 0x6c9a6bcf)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()) .WillOnce(Return(true)); // Skip the second FDE. EXPECT_CALL(handler, Entry(_, 0xc534f7c0, 0xf6552e9, 2, "", 0xedca5849)) .WillOnce(Return(false)); // Process the third FDE. EXPECT_CALL(handler, Entry(_, 0xf681cfc8, 0x7e4594e, 2, "", 0xedca5849)) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0xf681cfc8, kCFARegister, 0x42ed390b, 0x98f43aad)) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(0xf681cfc8, 0x26c53934, 0x18eeb8a4)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()) .WillOnce(Return(true)); } ParseSection(§ion); } // Quit processing in the middle of an entry's instructions. TEST_F(CFIInsn, QuitMidentry) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_register).ULEB128(0xe0cf850d).ULEB128(0x15aab431) .D8(dwarf2reader::DW_CFA_expression).ULEB128(0x46750aa5).Block("meat") .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0xe0cf850d, 0x15aab431)) .InSequence(s).WillOnce(Return(false)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseSection(§ion, false); } class CFIRestore: public CFIInsnFixture, public Test { }; TEST_F(CFIRestore, RestoreUndefinedRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x0bac878e) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, UndefinedRule(fde_start, 0x0bac878e)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreUndefinedRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x7dedff5f) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_same_value).ULEB128(0x7dedff5f) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, UndefinedRule(fde_start, 0x7dedff5f)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, SameValueRule(fde_start + code_factor, 0x7dedff5f)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + 2 * code_factor, 0x7dedff5f)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreSameValueRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_same_value).ULEB128(0xadbc9b3a) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, SameValueRule(fde_start, 0xadbc9b3a)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreSameValueRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_same_value).ULEB128(0x3d90dcb5) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x3d90dcb5) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, SameValueRule(fde_start, 0x3d90dcb5)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x3d90dcb5)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, SameValueRule(fde_start + 2 * code_factor, 0x3d90dcb5)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreOffsetRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_offset | 0x14).ULEB128(0xb6f) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x14, kCFARegister, 0xb6f * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreOffsetRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_offset | 0x21).ULEB128(0xeb7) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x21) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x21, kCFARegister, 0xeb7 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x21)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21, kCFARegister, 0xeb7 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreOffsetRuleChangedOffset) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_offset | 0x21).ULEB128(0x134) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_offset | 0x21).ULEB128(0xf4f) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x21, kCFARegister, 0x134 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start + code_factor, 0x21, kCFARegister, 0xf4f * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21, kCFARegister, 0x134 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreValOffsetRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x829caee6).ULEB128(0xe4c) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x829caee6, kCFARegister, 0xe4c * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreValOffsetRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0xf17c36d6).ULEB128(0xeb7) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xf17c36d6) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0xf17c36d6, kCFARegister, 0xeb7 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xf17c36d6)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0xf17c36d6, kCFARegister, 0xeb7 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreValOffsetRuleChangedValOffset) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x2cf0ab1b).ULEB128(0x562) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x2cf0ab1b).ULEB128(0xe88) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2cf0ab1b, kCFARegister, 0x562 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, 0x2cf0ab1b, kCFARegister, 0xe88 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0x2cf0ab1b, kCFARegister, 0x562 * data_factor)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreRegisterRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_register).ULEB128(0x77514acc).ULEB128(0x464de4ce) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0x77514acc, 0x464de4ce)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreRegisterRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_register).ULEB128(0xe39acce5).ULEB128(0x095f1559) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xe39acce5) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0xe39acce5, 0x095f1559)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xe39acce5)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xe39acce5, 0x095f1559)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreRegisterRuleChangedRegister) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_register).ULEB128(0xd40e21b1).ULEB128(0x16607d6a) .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_register).ULEB128(0xd40e21b1).ULEB128(0xbabb4742) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0xd40e21b1, 0x16607d6a)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(fde_start + code_factor, 0xd40e21b1, 0xbabb4742)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xd40e21b1, 0x16607d6a)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreExpressionRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_expression).ULEB128(0x666ae152).Block("dwarf") .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0x666ae152, "dwarf")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreExpressionRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_expression).ULEB128(0xb5ca5c46).Block("elf") .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xb5ca5c46) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0xb5ca5c46, "elf")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46, "elf")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreExpressionRuleChangedExpression) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_expression).ULEB128(0x500f5739).Block("smurf") .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_expression).ULEB128(0x500f5739).Block("orc") .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0x500f5739, "smurf")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ExpressionRule(fde_start + code_factor, 0x500f5739, "orc")) .InSequence(s).WillOnce(Return(true)); // Expectations are not wishes. EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0x500f5739, "smurf")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreValExpressionRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0x666ae152) .Block("hideous") .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x666ae152, "hideous")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreValExpressionRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0xb5ca5c46) .Block("revolting") .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xb5ca5c46) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChanged", section); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xb5ca5c46, "revolting")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46, "revolting")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(CFIRestore, RestoreValExpressionRuleChangedValExpression) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section .D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0x500f5739) .Block("repulsive") .D8(dwarf2reader::DW_CFA_remember_state) .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0x500f5739) .Block("nauseous") .D8(dwarf2reader::DW_CFA_advance_loc | 1) .D8(dwarf2reader::DW_CFA_restore_state) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChangedValExpression", section); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x500f5739, "repulsive")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValExpressionRule(fde_start + code_factor, 0x500f5739, "nauseous")) .InSequence(s).WillOnce(Return(true)); // Expectations are not wishes. EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0x500f5739, "repulsive")) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } struct EHFrameFixture: public CFIInsnFixture { EHFrameFixture() : CFIInsnFixture(), section(kBigEndian, 4, true) { encoded_pointer_bases.cfi = 0x7f496cb2; encoded_pointer_bases.text = 0x540f67b6; encoded_pointer_bases.data = 0xe3eab768; section.SetEncodedPointerBases(encoded_pointer_bases); } CFISection section; CFISection::EncodedPointerBases encoded_pointer_bases; // Parse CFIInsnFixture::ParseSection, but parse the section as // .eh_frame data, supplying stock base addresses. void ParseEHFrameSection(CFISection *section, bool succeeds = true) { EXPECT_TRUE(section->ContainsEHFrame()); string contents; EXPECT_TRUE(section->GetContents(&contents)); dwarf2reader::Endianness endianness; if (section->endianness() == kBigEndian) endianness = ENDIANNESS_BIG; else { assert(section->endianness() == kLittleEndian); endianness = ENDIANNESS_LITTLE; } ByteReader byte_reader(endianness); byte_reader.SetAddressSize(section->AddressSize()); byte_reader.SetCFIDataBase(encoded_pointer_bases.cfi, reinterpret_cast(contents.data())); byte_reader.SetTextBase(encoded_pointer_bases.text); byte_reader.SetDataBase(encoded_pointer_bases.data); CallFrameInfo parser(reinterpret_cast(contents.data()), contents.size(), &byte_reader, &handler, &reporter, true); if (succeeds) EXPECT_TRUE(parser.Start()); else EXPECT_FALSE(parser.Start()); } }; class EHFrame: public EHFrameFixture, public Test { }; // A simple CIE, an FDE, and a terminator. TEST_F(EHFrame, Terminator) { Label cie; section .Mark(&cie) .CIEHeader(9968, 2466, 67, 1, "") .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(3772).ULEB128(1372) .FinishEntry() .FDEHeader(cie, 0x848037a1, 0x7b30475e) .D8(dwarf2reader::DW_CFA_set_loc).D32(0x17713850) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(5721) .FinishEntry() .D32(0) // Terminate the sequence. // This FDE should be ignored. .FDEHeader(cie, 0xf19629fe, 0x439fb09b) .FinishEntry(); PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.Terminator", section); EXPECT_CALL(handler, Entry(_, 0x848037a1, 0x7b30475e, 1, "", 67)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0x848037a1, kCFARegister, 3772, 1372)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(0x17713850, 5721)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(reporter, EarlyEHTerminator(_)) .InSequence(s).WillOnce(Return()); ParseEHFrameSection(§ion); } // The parser should recognize the Linux Standards Base 'z' augmentations. TEST_F(EHFrame, SimpleFDE) { DwarfPointerEncoding lsda_encoding = DwarfPointerEncoding(dwarf2reader::DW_EH_PE_indirect | dwarf2reader::DW_EH_PE_datarel | dwarf2reader::DW_EH_PE_sdata2); DwarfPointerEncoding fde_encoding = DwarfPointerEncoding(dwarf2reader::DW_EH_PE_textrel | dwarf2reader::DW_EH_PE_udata2); section.SetPointerEncoding(fde_encoding); section.SetEncodedPointerBases(encoded_pointer_bases); Label cie; section .Mark(&cie) .CIEHeader(4873, 7012, 100, 1, "zSLPR") .ULEB128(7) // Augmentation data length .D8(lsda_encoding) // LSDA pointer format .D8(dwarf2reader::DW_EH_PE_pcrel) // personality pointer format .EncodedPointer(0x97baa00, dwarf2reader::DW_EH_PE_pcrel) // and value .D8(fde_encoding) // FDE pointer format .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(6706).ULEB128(31) .FinishEntry() .FDEHeader(cie, 0x540f6b56, 0xf686) .ULEB128(2) // Augmentation data length .EncodedPointer(0xe3eab475, lsda_encoding) // LSDA pointer, signed .D8(dwarf2reader::DW_CFA_set_loc) .EncodedPointer(0x540fa4ce, fde_encoding) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x675e) .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.SimpleFDE", section); EXPECT_CALL(handler, Entry(_, 0x540f6b56, 0xf686, 1, "zSLPR", 100)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, PersonalityRoutine(0x97baa00, false)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, LanguageSpecificDataArea(0xe3eab475, true)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, SignalHandler()) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0x540f6b56, kCFARegister, 6706, 31)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(0x540fa4ce, 0x675e)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } // Check that we can handle an empty 'z' augmentation. TEST_F(EHFrame, EmptyZ) { Label cie; section .Mark(&cie) .CIEHeader(5955, 5805, 228, 1, "z") .ULEB128(0) // Augmentation data length .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(3629).ULEB128(247) .FinishEntry() .FDEHeader(cie, 0xda007738, 0xfb55c641) .ULEB128(0) // Augmentation data length .D8(dwarf2reader::DW_CFA_advance_loc1).D8(11) .D8(dwarf2reader::DW_CFA_undefined).ULEB128(3769) .FinishEntry(); PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.EmptyZ", section); EXPECT_CALL(handler, Entry(_, 0xda007738, 0xfb55c641, 1, "z", 228)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0xda007738, kCFARegister, 3629, 247)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(0xda007738 + 11 * 5955, 3769)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } // Check that we recognize bad 'z' augmentation characters. TEST_F(EHFrame, BadZ) { Label cie; section .Mark(&cie) .CIEHeader(6937, 1045, 142, 1, "zQ") .ULEB128(0) // Augmentation data length .D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(9006).ULEB128(7725) .FinishEntry() .FDEHeader(cie, 0x1293efa8, 0x236f53f2) .ULEB128(0) // Augmentation data length .D8(dwarf2reader::DW_CFA_advance_loc | 12) .D8(dwarf2reader::DW_CFA_register).ULEB128(5667).ULEB128(3462) .FinishEntry(); PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.BadZ", section); EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "zQ")) .WillOnce(Return()); ParseEHFrameSection(§ion, false); } TEST_F(EHFrame, zL) { Label cie; DwarfPointerEncoding lsda_encoding = DwarfPointerEncoding(dwarf2reader::DW_EH_PE_funcrel | dwarf2reader::DW_EH_PE_udata2); section .Mark(&cie) .CIEHeader(9285, 9959, 54, 1, "zL") .ULEB128(1) // Augmentation data length .D8(lsda_encoding) // encoding for LSDA pointer in FDE .FinishEntry() .FDEHeader(cie, 0xd40091aa, 0x9aa6e746) .ULEB128(2) // Augmentation data length .EncodedPointer(0xd40099cd, lsda_encoding) // LSDA pointer .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zL", section); EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zL", 54)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, LanguageSpecificDataArea(0xd40099cd, false)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } TEST_F(EHFrame, zP) { Label cie; DwarfPointerEncoding personality_encoding = DwarfPointerEncoding(dwarf2reader::DW_EH_PE_datarel | dwarf2reader::DW_EH_PE_udata2); section .Mark(&cie) .CIEHeader(1097, 6313, 17, 1, "zP") .ULEB128(3) // Augmentation data length .D8(personality_encoding) // encoding for personality routine .EncodedPointer(0xe3eaccac, personality_encoding) // value .FinishEntry() .FDEHeader(cie, 0x0c8350c9, 0xbef11087) .ULEB128(0) // Augmentation data length .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zP", section); EXPECT_CALL(handler, Entry(_, 0x0c8350c9, 0xbef11087, 1, "zP", 17)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, PersonalityRoutine(0xe3eaccac, false)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } TEST_F(EHFrame, zR) { Label cie; DwarfPointerEncoding pointer_encoding = DwarfPointerEncoding(dwarf2reader::DW_EH_PE_textrel | dwarf2reader::DW_EH_PE_sdata2); section.SetPointerEncoding(pointer_encoding); section .Mark(&cie) .CIEHeader(8011, 5496, 75, 1, "zR") .ULEB128(1) // Augmentation data length .D8(pointer_encoding) // encoding for FDE addresses .FinishEntry() .FDEHeader(cie, 0x540f9431, 0xbd0) .ULEB128(0) // Augmentation data length .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zR", section); EXPECT_CALL(handler, Entry(_, 0x540f9431, 0xbd0, 1, "zR", 75)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } TEST_F(EHFrame, zS) { Label cie; section .Mark(&cie) .CIEHeader(9217, 7694, 57, 1, "zS") .ULEB128(0) // Augmentation data length .FinishEntry() .FDEHeader(cie, 0xd40091aa, 0x9aa6e746) .ULEB128(0) // Augmentation data length .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zS", section); EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zS", 57)) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, SignalHandler()) .InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()) .InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } // These tests require manual inspection of the test output. struct CFIReporterFixture { CFIReporterFixture() : reporter("test file name", "test section name") { } CallFrameInfo::Reporter reporter; }; class CFIReporter: public CFIReporterFixture, public Test { }; TEST_F(CFIReporter, Incomplete) { reporter.Incomplete(0x0102030405060708ULL, CallFrameInfo::kUnknown); } TEST_F(CFIReporter, EarlyEHTerminator) { reporter.EarlyEHTerminator(0x0102030405060708ULL); } TEST_F(CFIReporter, CIEPointerOutOfRange) { reporter.CIEPointerOutOfRange(0x0123456789abcdefULL, 0xfedcba9876543210ULL); } TEST_F(CFIReporter, BadCIEId) { reporter.BadCIEId(0x0123456789abcdefULL, 0xfedcba9876543210ULL); } TEST_F(CFIReporter, UnrecognizedVersion) { reporter.UnrecognizedVersion(0x0123456789abcdefULL, 43); } TEST_F(CFIReporter, UnrecognizedAugmentation) { reporter.UnrecognizedAugmentation(0x0123456789abcdefULL, "poodles"); } TEST_F(CFIReporter, InvalidPointerEncoding) { reporter.InvalidPointerEncoding(0x0123456789abcdefULL, 0x42); } TEST_F(CFIReporter, UnusablePointerEncoding) { reporter.UnusablePointerEncoding(0x0123456789abcdefULL, 0x42); } TEST_F(CFIReporter, RestoreInCIE) { reporter.RestoreInCIE(0x0123456789abcdefULL, 0xfedcba9876543210ULL); } TEST_F(CFIReporter, BadInstruction) { reporter.BadInstruction(0x0123456789abcdefULL, CallFrameInfo::kFDE, 0xfedcba9876543210ULL); } TEST_F(CFIReporter, NoCFARule) { reporter.NoCFARule(0x0123456789abcdefULL, CallFrameInfo::kCIE, 0xfedcba9876543210ULL); } TEST_F(CFIReporter, EmptyStateStack) { reporter.EmptyStateStack(0x0123456789abcdefULL, CallFrameInfo::kTerminator, 0xfedcba9876543210ULL); } TEST_F(CFIReporter, ClearingCFARule) { reporter.ClearingCFARule(0x0123456789abcdefULL, CallFrameInfo::kFDE, 0xfedcba9876543210ULL); } #ifdef WRITE_ELF // See comments at the top of the file mentioning WRITE_ELF for details. using google_breakpad::test_assembler::Section; struct ELFSectionHeader { ELFSectionHeader(unsigned int set_type) : type(set_type), flags(0), address(0), link(0), info(0), alignment(1), entry_size(0) { } Label name; unsigned int type; uint64_t flags; uint64_t address; Label file_offset; Label file_size; unsigned int link; unsigned int info; uint64_t alignment; uint64_t entry_size; }; void AppendSectionHeader(CFISection* table, const ELFSectionHeader& header) { (*table) .D32(header.name) // name, index in string tbl .D32(header.type) // type .Address(header.flags) // flags .Address(header.address) // address in memory .Address(header.file_offset) // offset in ELF file .Address(header.file_size) // length in bytes .D32(header.link) // link to related section .D32(header.info) // miscellaneous .Address(header.alignment) // alignment .Address(header.entry_size); // entry size } void WriteELFFrameSection(const char *filename, const char *cfi_name, const CFISection& cfi) { int elf_class = cfi.AddressSize() == 4 ? ELFCLASS32 : ELFCLASS64; int elf_data = (cfi.endianness() == kBigEndian ? ELFDATA2MSB : ELFDATA2LSB); CFISection elf(cfi.endianness(), cfi.AddressSize()); Label elf_header_size, section_table_offset; elf .Append("\x7f" "ELF") .D8(elf_class) // 32-bit or 64-bit ELF .D8(elf_data) // endianness .D8(1) // ELF version .D8(ELFOSABI_LINUX) // Operating System/ABI indication .D8(0) // ABI version .Append(7, 0xda) // padding .D16(ET_EXEC) // file type: executable file .D16(EM_386) // architecture: Intel IA-32 .D32(EV_CURRENT); // ELF version elf .Address(0x0123456789abcdefULL) // program entry point .Address(0) // program header offset .Address(section_table_offset) // section header offset .D32(0) // processor-specific flags .D16(elf_header_size) // ELF header size in bytes */ .D16(elf_class == ELFCLASS32 ? 32 : 56) // program header entry size .D16(0) // program header table entry count .D16(elf_class == ELFCLASS32 ? 40 : 64) // section header entry size .D16(3) // section count .D16(1) // section name string table .Mark(&elf_header_size); // The null section. Every ELF file has one, as the first entry in // the section header table. ELFSectionHeader null_header(SHT_NULL); null_header.file_offset = 0; null_header.file_size = 0; // The CFI section. The whole reason for writing out this ELF file // is to put this in it so that we can run other dumping programs on // it to check its contents. ELFSectionHeader cfi_header(SHT_PROGBITS); cfi_header.file_size = cfi.Size(); // The section holding the names of the sections. This is the // section whose index appears in the e_shstrndx member of the ELF // header. ELFSectionHeader section_names_header(SHT_STRTAB); CFISection section_names(cfi.endianness(), cfi.AddressSize()); section_names .Mark(&null_header.name) .AppendCString("") .Mark(§ion_names_header.name) .AppendCString(".shstrtab") .Mark(&cfi_header.name) .AppendCString(cfi_name) .Mark(§ion_names_header.file_size); // Create the section table. The ELF header's e_shoff member refers // to this, and the e_shnum member gives the number of entries it // contains. CFISection section_table(cfi.endianness(), cfi.AddressSize()); AppendSectionHeader(§ion_table, null_header); AppendSectionHeader(§ion_table, section_names_header); AppendSectionHeader(§ion_table, cfi_header); // Append the section table and the section contents to the ELF file. elf .Mark(§ion_table_offset) .Append(section_table) .Mark(§ion_names_header.file_offset) .Append(section_names) .Mark(&cfi_header.file_offset) .Append(cfi); string contents; if (!elf.GetContents(&contents)) { fprintf(stderr, "failed to get ELF file contents\n"); exit(1); } FILE *out = fopen(filename, "w"); if (!out) { fprintf(stderr, "error opening ELF file '%s': %s\n", filename, strerror(errno)); exit(1); } if (fwrite(contents.data(), 1, contents.size(), out) != contents.size()) { fprintf(stderr, "error writing ELF data to '%s': %s\n", filename, strerror(errno)); exit(1); } if (fclose(out) == EOF) { fprintf(stderr, "error closing ELF file '%s': %s\n", filename, strerror(errno)); exit(1); } } #endif