// Copyright (c) 2010 Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Original author: Jim Blandy // Implement the DwarfCUToModule class; see dwarf_cu_to_module.h. // For PRI* macros, before anything else might #include it. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif /* __STDC_FORMAT_MACROS */ #include "common/dwarf_cu_to_module.h" #include #include #include #include #include #include #include #include "common/dwarf_line_to_module.h" #include "common/unordered.h" #include "google_breakpad/common/breakpad_types.h" namespace google_breakpad { using std::accumulate; using std::map; using std::pair; using std::sort; using std::vector; // Data provided by a DWARF specification DIE. // // In DWARF, the DIE for a definition may contain a DW_AT_specification // attribute giving the offset of the corresponding declaration DIE, and // the definition DIE may omit information given in the declaration. For // example, it's common for a function's address range to appear only in // its definition DIE, but its name to appear only in its declaration // DIE. // // The dumper needs to be able to follow DW_AT_specification links to // bring all this information together in a FUNC record. Conveniently, // DIEs that are the target of such links have a DW_AT_declaration flag // set, so we can identify them when we first see them, and record their // contents for later reference. // // A Specification holds information gathered from a declaration DIE that // we may need if we find a DW_AT_specification link pointing to it. struct DwarfCUToModule::Specification { // The qualified name that can be found by demangling DW_AT_MIPS_linkage_name. string qualified_name; // The name of the enclosing scope, or the empty string if there is none. string enclosing_name; // The name for the specification DIE itself, without any enclosing // name components. string unqualified_name; }; // An abstract origin -- base definition of an inline function. struct AbstractOrigin { AbstractOrigin() : name() {} explicit AbstractOrigin(const string& name) : name(name) {} string name; }; typedef map AbstractOriginByOffset; // Data global to the DWARF-bearing file that is private to the // DWARF-to-Module process. struct DwarfCUToModule::FilePrivate { // A set of strings used in this CU. Before storing a string in one of // our data structures, insert it into this set, and then use the string // from the set. // // In some STL implementations, strings are reference-counted internally, // meaning that simply using strings from this set, even if passed by // value, assigned, or held directly in structures and containers // (map, for example), causes those strings to share a // single instance of each distinct piece of text. GNU's libstdc++ uses // reference counts, and I believe MSVC did as well, at some point. // However, C++ '11 implementations are moving away from reference // counting. // // In other implementations, string assignments copy the string's text, // so this set will actually hold yet another copy of the string (although // everything will still work). To improve memory consumption portably, // we will probably need to use pointers to strings held in this set. unordered_set common_strings; // A map from offsets of DIEs within the .debug_info section to // Specifications describing those DIEs. Specification references can // cross compilation unit boundaries. SpecificationByOffset specifications; AbstractOriginByOffset origins; }; DwarfCUToModule::FileContext::FileContext(const string& filename, Module* module, bool handle_inter_cu_refs) : filename_(filename), module_(module), handle_inter_cu_refs_(handle_inter_cu_refs), file_private_(new FilePrivate()) { } DwarfCUToModule::FileContext::~FileContext() { } void DwarfCUToModule::FileContext::AddSectionToSectionMap( const string& name, const uint8_t* contents, uint64_t length) { section_map_[name] = std::make_pair(contents, length); } void DwarfCUToModule::FileContext::ClearSectionMapForTest() { section_map_.clear(); } const dwarf2reader::SectionMap& DwarfCUToModule::FileContext::section_map() const { return section_map_; } void DwarfCUToModule::FileContext::ClearSpecifications() { if (!handle_inter_cu_refs_) file_private_->specifications.clear(); } bool DwarfCUToModule::FileContext::IsUnhandledInterCUReference( uint64_t offset, uint64_t compilation_unit_start) const { if (handle_inter_cu_refs_) return false; return offset < compilation_unit_start; } // Information global to the particular compilation unit we're // parsing. This is for data shared across the CU's entire DIE tree, // and parameters from the code invoking the CU parser. struct DwarfCUToModule::CUContext { CUContext(FileContext* file_context_arg, WarningReporter* reporter_arg, RangesHandler* ranges_handler_arg) : file_context(file_context_arg), reporter(reporter_arg), ranges_handler(ranges_handler_arg), language(Language::CPlusPlus), low_pc(0), high_pc(0), ranges(0) {} ~CUContext() { for (vector::iterator it = functions.begin(); it != functions.end(); ++it) { delete *it; } }; // The DWARF-bearing file into which this CU was incorporated. FileContext* file_context; // For printing error messages. WarningReporter* reporter; // For reading ranges from the .debug_ranges section RangesHandler* ranges_handler; // The source language of this compilation unit. const Language* language; // Addresses covered by this CU. If high_pc_ is non-zero then the CU covers // low_pc to high_pc, otherwise ranges is non-zero and low_pc represents // the base address of the ranges covered by the CU. uint64_t low_pc; uint64_t high_pc; uint64_t ranges; // The functions defined in this compilation unit. We accumulate // them here during parsing. Then, in DwarfCUToModule::Finish, we // assign them lines and add them to file_context->module. // // Destroying this destroys all the functions this vector points to. vector functions; // Keep a list of forward references from DW_AT_abstract_origin and // DW_AT_specification attributes so names can be fixed up. std::map forward_ref_die_to_func; }; // Information about the context of a particular DIE. This is for // information that changes as we descend the tree towards the leaves: // the containing classes/namespaces, etc. struct DwarfCUToModule::DIEContext { // The fully-qualified name of the context. For example, for a // tree like: // // DW_TAG_namespace Foo // DW_TAG_class Bar // DW_TAG_subprogram Baz // // in a C++ compilation unit, the DIEContext's name for the // DW_TAG_subprogram DIE would be "Foo::Bar". The DIEContext's // name for the DW_TAG_namespace DIE would be "". string name; }; // An abstract base class for all the dumper's DIE handlers. class DwarfCUToModule::GenericDIEHandler: public dwarf2reader::DIEHandler { public: // Create a handler for the DIE at OFFSET whose compilation unit is // described by CU_CONTEXT, and whose immediate context is described // by PARENT_CONTEXT. GenericDIEHandler(CUContext* cu_context, DIEContext* parent_context, uint64_t offset) : cu_context_(cu_context), parent_context_(parent_context), offset_(offset), declaration_(false), specification_(NULL), forward_ref_die_offset_(0) { } // Derived classes' ProcessAttributeUnsigned can defer to this to // handle DW_AT_declaration, or simply not override it. void ProcessAttributeUnsigned(enum DwarfAttribute attr, enum DwarfForm form, uint64_t data); // Derived classes' ProcessAttributeReference can defer to this to // handle DW_AT_specification, or simply not override it. void ProcessAttributeReference(enum DwarfAttribute attr, enum DwarfForm form, uint64_t data); // Derived classes' ProcessAttributeReference can defer to this to // handle DW_AT_specification, or simply not override it. void ProcessAttributeString(enum DwarfAttribute attr, enum DwarfForm form, const string& data); protected: // Compute and return the fully-qualified name of the DIE. If this // DIE is a declaration DIE, to be cited by other DIEs' // DW_AT_specification attributes, record its enclosing name and // unqualified name in the specification table. // // Use this from EndAttributes member functions, not ProcessAttribute* // functions; only the former can be sure that all the DIE's attributes // have been seen. string ComputeQualifiedName(); CUContext* cu_context_; DIEContext* parent_context_; uint64_t offset_; // Place the name in the global set of strings. Even though this looks // like a copy, all the major string implementations use reference // counting internally, so the effect is to have all the data structures // share copies of strings whenever possible. // FIXME: Should this return something like a string_ref to avoid the // assumption about how strings are implemented? string AddStringToPool(const string& str); // If this DIE has a DW_AT_declaration attribute, this is its value. // It is false on DIEs with no DW_AT_declaration attribute. bool declaration_; // If this DIE has a DW_AT_specification attribute, this is the // Specification structure for the DIE the attribute refers to. // Otherwise, this is NULL. Specification* specification_; // If this DIE has a DW_AT_specification or DW_AT_abstract_origin and it is a // forward reference, no Specification will be available. Track the reference // to be fixed up when the DIE is parsed. uint64_t forward_ref_die_offset_; // The value of the DW_AT_name attribute, or the empty string if the // DIE has no such attribute. string name_attribute_; // The demangled value of the DW_AT_MIPS_linkage_name attribute, or the empty // string if the DIE has no such attribute or its content could not be // demangled. string demangled_name_; // The non-demangled value of the DW_AT_MIPS_linkage_name attribute, // it its content count not be demangled. string raw_name_; }; void DwarfCUToModule::GenericDIEHandler::ProcessAttributeUnsigned( enum DwarfAttribute attr, enum DwarfForm form, uint64_t data) { switch (attr) { case dwarf2reader::DW_AT_declaration: declaration_ = (data != 0); break; default: break; } } void DwarfCUToModule::GenericDIEHandler::ProcessAttributeReference( enum DwarfAttribute attr, enum DwarfForm form, uint64_t data) { switch (attr) { case dwarf2reader::DW_AT_specification: { FileContext* file_context = cu_context_->file_context; if (file_context->IsUnhandledInterCUReference( data, cu_context_->reporter->cu_offset())) { cu_context_->reporter->UnhandledInterCUReference(offset_, data); break; } // Find the Specification to which this attribute refers, and // set specification_ appropriately. We could do more processing // here, but it's better to leave the real work to our // EndAttribute member function, at which point we know we have // seen all the DIE's attributes. SpecificationByOffset* specifications = &file_context->file_private_->specifications; SpecificationByOffset::iterator spec = specifications->find(data); if (spec != specifications->end()) { specification_ = &spec->second; } else if (data > offset_) { forward_ref_die_offset_ = data; } else { cu_context_->reporter->UnknownSpecification(offset_, data); } break; } default: break; } } string DwarfCUToModule::GenericDIEHandler::AddStringToPool(const string& str) { pair::iterator, bool> result = cu_context_->file_context->file_private_->common_strings.insert(str); return *result.first; } void DwarfCUToModule::GenericDIEHandler::ProcessAttributeString( enum DwarfAttribute attr, enum DwarfForm form, const string& data) { switch (attr) { case dwarf2reader::DW_AT_name: name_attribute_ = AddStringToPool(data); break; case dwarf2reader::DW_AT_MIPS_linkage_name: case dwarf2reader::DW_AT_linkage_name: { string demangled; Language::DemangleResult result = cu_context_->language->DemangleName(data, &demangled); switch (result) { case Language::kDemangleSuccess: demangled_name_ = AddStringToPool(demangled); break; case Language::kDemangleFailure: cu_context_->reporter->DemangleError(data); // fallthrough case Language::kDontDemangle: demangled_name_.clear(); raw_name_ = AddStringToPool(data); break; } break; } default: break; } } string DwarfCUToModule::GenericDIEHandler::ComputeQualifiedName() { // Use the demangled name, if one is available. Demangled names are // preferable to those inferred from the DWARF structure because they // include argument types. const string* qualified_name = NULL; if (!demangled_name_.empty()) { // Found it is this DIE. qualified_name = &demangled_name_; } else if (specification_ && !specification_->qualified_name.empty()) { // Found it on the specification. qualified_name = &specification_->qualified_name; } const string* unqualified_name = NULL; const string* enclosing_name; if (!qualified_name) { // Find the unqualified name. If the DIE has its own DW_AT_name // attribute, then use that; otherwise, check the specification. if (!name_attribute_.empty()) unqualified_name = &name_attribute_; else if (specification_) unqualified_name = &specification_->unqualified_name; else if (!raw_name_.empty()) unqualified_name = &raw_name_; // Find the name of the enclosing context. If this DIE has a // specification, it's the specification's enclosing context that // counts; otherwise, use this DIE's context. if (specification_) enclosing_name = &specification_->enclosing_name; else enclosing_name = &parent_context_->name; } // Prepare the return value before upcoming mutations possibly invalidate the // existing pointers. string return_value; if (qualified_name) { return_value = *qualified_name; } else if (unqualified_name && enclosing_name) { // Combine the enclosing name and unqualified name to produce our // own fully-qualified name. return_value = cu_context_->language->MakeQualifiedName(*enclosing_name, *unqualified_name); } // If this DIE was marked as a declaration, record its names in the // specification table. if ((declaration_ && qualified_name) || (unqualified_name && enclosing_name)) { Specification spec; if (qualified_name) { spec.qualified_name = *qualified_name; } else { spec.enclosing_name = *enclosing_name; spec.unqualified_name = *unqualified_name; } cu_context_->file_context->file_private_->specifications[offset_] = spec; } return return_value; } // A handler class for DW_TAG_subprogram DIEs. class DwarfCUToModule::FuncHandler: public GenericDIEHandler { public: FuncHandler(CUContext* cu_context, DIEContext* parent_context, uint64_t offset) : GenericDIEHandler(cu_context, parent_context, offset), low_pc_(0), high_pc_(0), high_pc_form_(dwarf2reader::DW_FORM_addr), ranges_(0), abstract_origin_(NULL), inline_(false) { } void ProcessAttributeUnsigned(enum DwarfAttribute attr, enum DwarfForm form, uint64_t data); void ProcessAttributeSigned(enum DwarfAttribute attr, enum DwarfForm form, int64_t data); void ProcessAttributeReference(enum DwarfAttribute attr, enum DwarfForm form, uint64_t data); bool EndAttributes(); void Finish(); private: // The fully-qualified name, as derived from name_attribute_, // specification_, parent_context_. Computed in EndAttributes. string name_; uint64_t low_pc_, high_pc_; // DW_AT_low_pc, DW_AT_high_pc DwarfForm high_pc_form_; // DW_AT_high_pc can be length or address. uint64_t ranges_; // DW_AT_ranges const AbstractOrigin* abstract_origin_; bool inline_; }; void DwarfCUToModule::FuncHandler::ProcessAttributeUnsigned( enum DwarfAttribute attr, enum DwarfForm form, uint64_t data) { switch (attr) { // If this attribute is present at all --- even if its value is // DW_INL_not_inlined --- then GCC may cite it as someone else's // DW_AT_abstract_origin attribute. case dwarf2reader::DW_AT_inline: inline_ = true; break; case dwarf2reader::DW_AT_low_pc: low_pc_ = data; break; case dwarf2reader::DW_AT_high_pc: high_pc_form_ = form; high_pc_ = data; break; case dwarf2reader::DW_AT_ranges: ranges_ = data; break; default: GenericDIEHandler::ProcessAttributeUnsigned(attr, form, data); break; } } void DwarfCUToModule::FuncHandler::ProcessAttributeSigned( enum DwarfAttribute attr, enum DwarfForm form, int64_t data) { switch (attr) { // If this attribute is present at all --- even if its value is // DW_INL_not_inlined --- then GCC may cite it as someone else's // DW_AT_abstract_origin attribute. case dwarf2reader::DW_AT_inline: inline_ = true; break; default: break; } } void DwarfCUToModule::FuncHandler::ProcessAttributeReference( enum DwarfAttribute attr, enum DwarfForm form, uint64_t data) { switch (attr) { case dwarf2reader::DW_AT_abstract_origin: { const AbstractOriginByOffset& origins = cu_context_->file_context->file_private_->origins; AbstractOriginByOffset::const_iterator origin = origins.find(data); if (origin != origins.end()) { abstract_origin_ = &(origin->second); } else if (data > offset_) { forward_ref_die_offset_ = data; } else { cu_context_->reporter->UnknownAbstractOrigin(offset_, data); } break; } default: GenericDIEHandler::ProcessAttributeReference(attr, form, data); break; } } bool DwarfCUToModule::FuncHandler::EndAttributes() { // Compute our name, and record a specification, if appropriate. name_ = ComputeQualifiedName(); if (name_.empty() && abstract_origin_) { name_ = abstract_origin_->name; } return true; } static bool IsEmptyRange(const vector& ranges) { uint64_t size = accumulate(ranges.cbegin(), ranges.cend(), 0, [](uint64_t total, Module::Range entry) { return total + entry.size; } ); return size == 0; } void DwarfCUToModule::FuncHandler::Finish() { vector ranges; // Check if this DIE was one of the forward references that was not able // to be processed, and fix up the name of the appropriate Module::Function. // "name_" will have already been fixed up in EndAttributes(). if (!name_.empty()) { auto iter = cu_context_->forward_ref_die_to_func.find(offset_); if (iter != cu_context_->forward_ref_die_to_func.end()) iter->second->name = name_; } if (!ranges_) { // Make high_pc_ an address, if it isn't already. if (high_pc_form_ != dwarf2reader::DW_FORM_addr && high_pc_form_ != dwarf2reader::DW_FORM_GNU_addr_index && high_pc_form_ != dwarf2reader::DW_FORM_addrx && high_pc_form_ != dwarf2reader::DW_FORM_addrx1 && high_pc_form_ != dwarf2reader::DW_FORM_addrx2 && high_pc_form_ != dwarf2reader::DW_FORM_addrx3 && high_pc_form_ != dwarf2reader::DW_FORM_addrx4) { high_pc_ += low_pc_; } Module::Range range(low_pc_, high_pc_ - low_pc_); ranges.push_back(range); } else { RangesHandler* ranges_handler = cu_context_->ranges_handler; if (ranges_handler) { if (!ranges_handler->ReadRanges(ranges_, cu_context_->low_pc, &ranges)) { ranges.clear(); cu_context_->reporter->MalformedRangeList(ranges_); } } else { cu_context_->reporter->MissingRanges(); } } // Did we collect the information we need? Not all DWARF function // entries are non-empty (for example, inlined functions that were never // used), but all the ones we're interested in cover a non-empty range of // bytes. if (!IsEmptyRange(ranges)) { low_pc_ = ranges.front().address; // Malformed DWARF may omit the name, but all Module::Functions must // have names. string name; if (!name_.empty()) { name = name_; } else { // If we have a forward reference to a DW_AT_specification or // DW_AT_abstract_origin, then don't warn, the name will be fixed up // later if (forward_ref_die_offset_ == 0) cu_context_->reporter->UnnamedFunction(offset_); name = ""; } // Create a Module::Function based on the data we've gathered, and // add it to the functions_ list. scoped_ptr func(new Module::Function(name, low_pc_)); func->ranges = ranges; func->parameter_size = 0; if (func->address) { // If the function address is zero this is a sign that this function // description is just empty debug data and should just be discarded. cu_context_->functions.push_back(func.release()); if (forward_ref_die_offset_ != 0) { auto iter = cu_context_->forward_ref_die_to_func.find(forward_ref_die_offset_); if (iter == cu_context_->forward_ref_die_to_func.end()) { cu_context_->reporter->UnknownSpecification(offset_, forward_ref_die_offset_); } else { iter->second = cu_context_->functions.back(); } } } } else if (inline_) { AbstractOrigin origin(name_); cu_context_->file_context->file_private_->origins[offset_] = origin; } } // A handler for DIEs that contain functions and contribute a // component to their names: namespaces, classes, etc. class DwarfCUToModule::NamedScopeHandler: public GenericDIEHandler { public: NamedScopeHandler(CUContext* cu_context, DIEContext* parent_context, uint64_t offset) : GenericDIEHandler(cu_context, parent_context, offset) { } bool EndAttributes(); DIEHandler* FindChildHandler(uint64_t offset, enum DwarfTag tag); private: DIEContext child_context_; // A context for our children. }; bool DwarfCUToModule::NamedScopeHandler::EndAttributes() { child_context_.name = ComputeQualifiedName(); return true; } dwarf2reader::DIEHandler* DwarfCUToModule::NamedScopeHandler::FindChildHandler( uint64_t offset, enum DwarfTag tag) { switch (tag) { case dwarf2reader::DW_TAG_subprogram: return new FuncHandler(cu_context_, &child_context_, offset); case dwarf2reader::DW_TAG_namespace: case dwarf2reader::DW_TAG_class_type: case dwarf2reader::DW_TAG_structure_type: case dwarf2reader::DW_TAG_union_type: return new NamedScopeHandler(cu_context_, &child_context_, offset); default: return NULL; } } void DwarfCUToModule::WarningReporter::CUHeading() { if (printed_cu_header_) return; fprintf(stderr, "%s: in compilation unit '%s' (offset 0x%" PRIx64 "):\n", filename_.c_str(), cu_name_.c_str(), cu_offset_); printed_cu_header_ = true; } void DwarfCUToModule::WarningReporter::UnknownSpecification(uint64_t offset, uint64_t target) { CUHeading(); fprintf(stderr, "%s: the DIE at offset 0x%" PRIx64 " has a " "DW_AT_specification attribute referring to the DIE at offset 0x%" PRIx64 ", which was not marked as a declaration\n", filename_.c_str(), offset, target); } void DwarfCUToModule::WarningReporter::UnknownAbstractOrigin(uint64_t offset, uint64_t target) { CUHeading(); fprintf(stderr, "%s: the DIE at offset 0x%" PRIx64 " has a " "DW_AT_abstract_origin attribute referring to the DIE at offset 0x%" PRIx64 ", which was not marked as an inline\n", filename_.c_str(), offset, target); } void DwarfCUToModule::WarningReporter::MissingSection(const string& name) { CUHeading(); fprintf(stderr, "%s: warning: couldn't find DWARF '%s' section\n", filename_.c_str(), name.c_str()); } void DwarfCUToModule::WarningReporter::BadLineInfoOffset(uint64_t offset) { CUHeading(); fprintf(stderr, "%s: warning: line number data offset beyond end" " of '.debug_line' section\n", filename_.c_str()); } void DwarfCUToModule::WarningReporter::UncoveredHeading() { if (printed_unpaired_header_) return; CUHeading(); fprintf(stderr, "%s: warning: skipping unpaired lines/functions:\n", filename_.c_str()); printed_unpaired_header_ = true; } void DwarfCUToModule::WarningReporter::UncoveredFunction( const Module::Function& function) { if (!uncovered_warnings_enabled_) return; UncoveredHeading(); fprintf(stderr, " function%s: %s\n", IsEmptyRange(function.ranges) ? " (zero-length)" : "", function.name.c_str()); } void DwarfCUToModule::WarningReporter::UncoveredLine(const Module::Line& line) { if (!uncovered_warnings_enabled_) return; UncoveredHeading(); fprintf(stderr, " line%s: %s:%d at 0x%" PRIx64 "\n", (line.size == 0 ? " (zero-length)" : ""), line.file->name.c_str(), line.number, line.address); } void DwarfCUToModule::WarningReporter::UnnamedFunction(uint64_t offset) { CUHeading(); fprintf(stderr, "%s: warning: function at offset 0x%" PRIx64 " has no name\n", filename_.c_str(), offset); } void DwarfCUToModule::WarningReporter::DemangleError(const string& input) { CUHeading(); fprintf(stderr, "%s: warning: failed to demangle %s\n", filename_.c_str(), input.c_str()); } void DwarfCUToModule::WarningReporter::UnhandledInterCUReference( uint64_t offset, uint64_t target) { CUHeading(); fprintf(stderr, "%s: warning: the DIE at offset 0x%" PRIx64 " has a " "DW_FORM_ref_addr attribute with an inter-CU reference to " "0x%" PRIx64 ", but inter-CU reference handling is turned " " off.\n", filename_.c_str(), offset, target); } void DwarfCUToModule::WarningReporter::MalformedRangeList(uint64_t offset) { CUHeading(); fprintf(stderr, "%s: warning: the range list at offset 0x%" PRIx64 " falls " " out of the .debug_ranges section.\n", filename_.c_str(), offset); } void DwarfCUToModule::WarningReporter::MissingRanges() { CUHeading(); fprintf(stderr, "%s: warning: A DW_AT_ranges attribute was encountered but " "the .debug_ranges section is missing.\n", filename_.c_str()); } DwarfCUToModule::DwarfCUToModule(FileContext* file_context, LineToModuleHandler* line_reader, RangesHandler* ranges_handler, WarningReporter* reporter) : line_reader_(line_reader), cu_context_(new CUContext(file_context, reporter, ranges_handler)), child_context_(new DIEContext()), has_source_line_info_(false) { } DwarfCUToModule::~DwarfCUToModule() { } void DwarfCUToModule::ProcessAttributeSigned(enum DwarfAttribute attr, enum DwarfForm form, int64_t data) { switch (attr) { case dwarf2reader::DW_AT_language: // source language of this CU SetLanguage(static_cast(data)); break; default: break; } } void DwarfCUToModule::ProcessAttributeUnsigned(enum DwarfAttribute attr, enum DwarfForm form, uint64_t data) { switch (attr) { case dwarf2reader::DW_AT_stmt_list: // Line number information. has_source_line_info_ = true; source_line_offset_ = data; break; case dwarf2reader::DW_AT_language: // source language of this CU SetLanguage(static_cast(data)); break; case dwarf2reader::DW_AT_low_pc: cu_context_->low_pc = data; break; case dwarf2reader::DW_AT_high_pc: cu_context_->high_pc = data; break; case dwarf2reader::DW_AT_ranges: cu_context_->ranges = data; break; default: break; } } void DwarfCUToModule::ProcessAttributeString(enum DwarfAttribute attr, enum DwarfForm form, const string& data) { switch (attr) { case dwarf2reader::DW_AT_name: cu_context_->reporter->SetCUName(data); break; case dwarf2reader::DW_AT_comp_dir: line_reader_->StartCompilationUnit(data); break; default: break; } } bool DwarfCUToModule::EndAttributes() { return true; } dwarf2reader::DIEHandler* DwarfCUToModule::FindChildHandler( uint64_t offset, enum DwarfTag tag) { switch (tag) { case dwarf2reader::DW_TAG_subprogram: return new FuncHandler(cu_context_.get(), child_context_.get(), offset); case dwarf2reader::DW_TAG_namespace: case dwarf2reader::DW_TAG_class_type: case dwarf2reader::DW_TAG_structure_type: case dwarf2reader::DW_TAG_union_type: case dwarf2reader::DW_TAG_module: return new NamedScopeHandler(cu_context_.get(), child_context_.get(), offset); default: return NULL; } } void DwarfCUToModule::SetLanguage(DwarfLanguage language) { switch (language) { case dwarf2reader::DW_LANG_Java: cu_context_->language = Language::Java; break; case dwarf2reader::DW_LANG_Swift: cu_context_->language = Language::Swift; break; case dwarf2reader::DW_LANG_Rust: cu_context_->language = Language::Rust; break; // DWARF has no generic language code for assembly language; this is // what the GNU toolchain uses. case dwarf2reader::DW_LANG_Mips_Assembler: cu_context_->language = Language::Assembler; break; // C++ covers so many cases that it probably has some way to cope // with whatever the other languages throw at us. So make it the // default. // // Objective C and Objective C++ seem to create entries for // methods whose DW_AT_name values are already fully-qualified: // "-[Classname method:]". These appear at the top level. // // DWARF data for C should never include namespaces or functions // nested in struct types, but if it ever does, then C++'s // notation is probably not a bad choice for that. default: case dwarf2reader::DW_LANG_ObjC: case dwarf2reader::DW_LANG_ObjC_plus_plus: case dwarf2reader::DW_LANG_C: case dwarf2reader::DW_LANG_C89: case dwarf2reader::DW_LANG_C99: case dwarf2reader::DW_LANG_C_plus_plus: cu_context_->language = Language::CPlusPlus; break; } } void DwarfCUToModule::ReadSourceLines(uint64_t offset) { const dwarf2reader::SectionMap& section_map = cu_context_->file_context->section_map(); dwarf2reader::SectionMap::const_iterator map_entry = dwarf2reader::GetSectionByName(section_map, ".debug_line"); if (map_entry == section_map.end()) { cu_context_->reporter->MissingSection(".debug_line"); return; } const uint8_t* line_section_start = map_entry->second.first + offset; uint64_t line_section_length = map_entry->second.second; if (offset >= line_section_length) { cu_context_->reporter->BadLineInfoOffset(offset); return; } line_section_length -= offset; // When reading line tables, string sections are never needed for dwarf4, and // may or may not be needed by dwarf5, so no error if they are missing. const uint8_t* string_section_start = nullptr; uint64_t string_section_length = 0; map_entry = dwarf2reader::GetSectionByName(section_map, ".debug_str"); if (map_entry != section_map.end()) { string_section_start = map_entry->second.first + offset; string_section_length = map_entry->second.second - offset; } const uint8_t* line_string_section_start = nullptr; uint64_t line_string_section_length = 0; map_entry = dwarf2reader::GetSectionByName(section_map, ".debug_line_str"); if (map_entry != section_map.end()) { line_string_section_start = map_entry->second.first + offset; line_string_section_length = map_entry->second.second - offset; return; } line_reader_->ReadProgram( line_section_start, line_section_length, string_section_start, string_section_length, line_string_section_start, line_string_section_length, cu_context_->file_context->module_, &lines_); } namespace { class FunctionRange { public: FunctionRange(const Module::Range& range, Module::Function* function) : address(range.address), size(range.size), function(function) { } void AddLine(Module::Line& line) { function->lines.push_back(line); } Module::Address address; Module::Address size; Module::Function* function; }; // Fills an array of ranges with pointers to the functions which owns // them. The array is sorted in ascending order and the ranges are non // empty and non-overlapping. static void FillSortedFunctionRanges(vector& dest_ranges, vector* functions) { for (vector::const_iterator func_it = functions->cbegin(); func_it != functions->cend(); func_it++) { Module::Function* func = *func_it; vector& ranges = func->ranges; for (vector::const_iterator ranges_it = ranges.cbegin(); ranges_it != ranges.cend(); ++ranges_it) { FunctionRange range(*ranges_it, func); if (range.size != 0) { dest_ranges.push_back(range); } } } sort(dest_ranges.begin(), dest_ranges.end(), [](const FunctionRange& fr1, const FunctionRange& fr2) { return fr1.address < fr2.address; } ); } // Return true if ADDRESS falls within the range of ITEM. template inline bool within(const T& item, Module::Address address) { // Because Module::Address is unsigned, and unsigned arithmetic // wraps around, this will be false if ADDRESS falls before the // start of ITEM, or if it falls after ITEM's end. return address - item.address < item.size; } } void DwarfCUToModule::AssignLinesToFunctions() { vector* functions = &cu_context_->functions; WarningReporter* reporter = cu_context_->reporter; // This would be simpler if we assumed that source line entries // don't cross function boundaries. However, there's no real reason // to assume that (say) a series of function definitions on the same // line wouldn't get coalesced into one line number entry. The // DWARF spec certainly makes no such promises. // // So treat the functions and lines as peers, and take the trouble // to compute their ranges' intersections precisely. In any case, // the hair here is a constant factor for performance; the // complexity from here on out is linear. // Put both our functions and lines in order by address. std::sort(functions->begin(), functions->end(), Module::Function::CompareByAddress); std::sort(lines_.begin(), lines_.end(), Module::Line::CompareByAddress); // The last line that we used any piece of. We use this only for // generating warnings. const Module::Line* last_line_used = NULL; // The last function and line we warned about --- so we can avoid // doing so more than once. const Module::Function* last_function_cited = NULL; const Module::Line* last_line_cited = NULL; // Prepare a sorted list of ranges with range-to-function mapping vector sorted_ranges; FillSortedFunctionRanges(sorted_ranges, functions); // Make a single pass through both the range and line vectors from lower to // higher addresses, populating each range's function lines vector with lines // from our lines_ vector that fall within the range. vector::iterator range_it = sorted_ranges.begin(); vector::const_iterator line_it = lines_.begin(); Module::Address current; // Pointers to the referents of func_it and line_it, or NULL if the // iterator is at the end of the sequence. FunctionRange* range; const Module::Line* line; // Start current at the beginning of the first line or function, // whichever is earlier. if (range_it != sorted_ranges.end() && line_it != lines_.end()) { range = &*range_it; line = &*line_it; current = std::min(range->address, line->address); } else if (line_it != lines_.end()) { range = NULL; line = &*line_it; current = line->address; } else if (range_it != sorted_ranges.end()) { range = &*range_it; line = NULL; current = range->address; } else { return; } // Some dwarf producers handle linker-removed functions by using -1 as a // tombstone in the line table. So the end marker can be -1. if (current == Module::kMaxAddress) return; while (range || line) { // This loop has two invariants that hold at the top. // // First, at least one of the iterators is not at the end of its // sequence, and those that are not refer to the earliest // range or line that contains or starts after CURRENT. // // Note that every byte is in one of four states: it is covered // or not covered by a range, and, independently, it is // covered or not covered by a line. // // The second invariant is that CURRENT refers to a byte whose // state is different from its predecessor, or it refers to the // first byte in the address space. In other words, CURRENT is // always the address of a transition. // // Note that, although each iteration advances CURRENT from one // transition address to the next in each iteration, it might // not advance the iterators. Suppose we have a range that // starts with a line, has a gap, and then a second line, and // suppose that we enter an iteration with CURRENT at the end of // the first line. The next transition address is the start of // the second line, after the gap, so the iteration should // advance CURRENT to that point. At the head of that iteration, // the invariants require that the line iterator be pointing at // the second line. But this is also true at the head of the // next. And clearly, the iteration must not change the range // iterator. So neither iterator moves. // Assert the first invariant (see above). assert(!range || current < range->address || within(*range, current)); assert(!line || current < line->address || within(*line, current)); // The next transition after CURRENT. Module::Address next_transition; // Figure out which state we're in, add lines or warn, and compute // the next transition address. if (range && current >= range->address) { if (line && current >= line->address) { // Covered by both a line and a range. Module::Address range_left = range->size - (current - range->address); Module::Address line_left = line->size - (current - line->address); // This may overflow, but things work out. next_transition = current + std::min(range_left, line_left); Module::Line l = *line; l.address = current; l.size = next_transition - current; range->AddLine(l); last_line_used = line; } else { // Covered by a range, but no line. if (range->function != last_function_cited) { reporter->UncoveredFunction(*(range->function)); last_function_cited = range->function; } if (line && within(*range, line->address)) next_transition = line->address; else // If this overflows, we'll catch it below. next_transition = range->address + range->size; } } else { if (line && current >= line->address) { // Covered by a line, but no range. // // If GCC emits padding after one function to align the start // of the next, then it will attribute the padding // instructions to the last source line of function (to reduce // the size of the line number info), but omit it from the // DW_AT_{low,high}_pc range given in .debug_info (since it // costs nothing to be precise there). If we did use at least // some of the line we're about to skip, and it ends at the // start of the next function, then assume this is what // happened, and don't warn. if (line != last_line_cited && !(range && line == last_line_used && range->address - line->address == line->size)) { reporter->UncoveredLine(*line); last_line_cited = line; } if (range && within(*line, range->address)) next_transition = range->address; else // If this overflows, we'll catch it below. next_transition = line->address + line->size; } else { // Covered by neither a range nor a line. By the invariant, // both range and line begin after CURRENT. The next transition // is the start of the next range or next line, whichever // is earliest. assert(range || line); if (range && line) next_transition = std::min(range->address, line->address); else if (range) next_transition = range->address; else next_transition = line->address; } } // If a function or line abuts the end of the address space, then // next_transition may end up being zero, in which case we've completed // our pass. Handle that here, instead of trying to deal with it in // each place we compute next_transition. // Some dwarf producers handle linker-removed functions by using -1 as a // tombstone in the line table. So the end marker can be -1. if (!next_transition || next_transition == Module::kMaxAddress) break; // Advance iterators as needed. If lines overlap or functions overlap, // then we could go around more than once. We don't worry too much // about what result we produce in that case, just as long as we don't // hang or crash. while (range_it != sorted_ranges.end() && next_transition >= range_it->address && !within(*range_it, next_transition)) range_it++; range = (range_it != sorted_ranges.end()) ? &(*range_it) : NULL; while (line_it != lines_.end() && next_transition >= line_it->address && !within(*line_it, next_transition)) line_it++; line = (line_it != lines_.end()) ? &*line_it : NULL; // We must make progress. assert(next_transition > current); current = next_transition; } } void DwarfCUToModule::Finish() { // Assembly language files have no function data, and that gives us // no place to store our line numbers (even though the GNU toolchain // will happily produce source line info for assembly language // files). To avoid spurious warnings about lines we can't assign // to functions, skip CUs in languages that lack functions. if (!cu_context_->language->HasFunctions()) return; // Read source line info, if we have any. if (has_source_line_info_) ReadSourceLines(source_line_offset_); vector* functions = &cu_context_->functions; // Dole out lines to the appropriate functions. AssignLinesToFunctions(); // Add our functions, which now have source lines assigned to them, // to module_. cu_context_->file_context->module_->AddFunctions(functions->begin(), functions->end()); // Ownership of the function objects has shifted from cu_context to // the Module. functions->clear(); cu_context_->file_context->ClearSpecifications(); } bool DwarfCUToModule::StartCompilationUnit(uint64_t offset, uint8_t address_size, uint8_t offset_size, uint64_t cu_length, uint8_t dwarf_version) { return dwarf_version >= 2; } bool DwarfCUToModule::StartRootDIE(uint64_t offset, enum DwarfTag tag) { // We don't deal with partial compilation units (the only other tag // likely to be used for root DIE). return tag == dwarf2reader::DW_TAG_compile_unit; } } // namespace google_breakpad