// -*- mode: c++ -*- // Copyright (c) 2011, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: Jim Blandy // dump_syms.cc: Create a symbol file for use with minidumps #include "common/mac/dump_syms.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/dwarf/bytereader-inl.h" #include "common/dwarf/dwarf2reader.h" #include "common/dwarf_cfi_to_module.h" #include "common/dwarf_cu_to_module.h" #include "common/dwarf_line_to_module.h" #include "common/dwarf_range_list_handler.h" #include "common/mac/file_id.h" #include "common/mac/arch_utilities.h" #include "common/mac/macho_reader.h" #include "common/module.h" #include "common/path_helper.h" #include "common/scoped_ptr.h" #include "common/stabs_reader.h" #include "common/stabs_to_module.h" #include "common/symbol_data.h" #ifndef CPU_TYPE_ARM #define CPU_TYPE_ARM (static_cast(12)) #endif // CPU_TYPE_ARM #ifndef CPU_TYPE_ARM64 #define CPU_TYPE_ARM64 (static_cast(16777228)) #endif // CPU_TYPE_ARM64 using dwarf2reader::ByteReader; using google_breakpad::DwarfCUToModule; using google_breakpad::DwarfLineToModule; using google_breakpad::DwarfRangeListHandler; using google_breakpad::FileID; using google_breakpad::mach_o::FatReader; using google_breakpad::mach_o::Section; using google_breakpad::mach_o::Segment; using google_breakpad::Module; using google_breakpad::StabsReader; using google_breakpad::StabsToModule; using google_breakpad::scoped_ptr; using std::make_pair; using std::pair; using std::string; using std::vector; namespace { // Return a vector with absolute paths to all the entries // in directory (excluding . and ..). vector list_directory(const string& directory) { vector entries; DIR* dir = opendir(directory.c_str()); if (!dir) { return entries; } string path = directory; if (path[path.length() - 1] != '/') { path += '/'; } struct dirent* entry = NULL; while ((entry = readdir(dir))) { if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) { entries.push_back(path + entry->d_name); } } closedir(dir); return entries; } } namespace google_breakpad { bool DumpSymbols::Read(const string& filename) { struct stat st; if (stat(filename.c_str(), &st) == -1) { fprintf(stderr, "Could not access object file %s: %s\n", filename.c_str(), strerror(errno)); return false; } input_pathname_ = filename; // Does this filename refer to a dSYM bundle? string contents_path = input_pathname_ + "/Contents/Resources/DWARF"; if (S_ISDIR(st.st_mode) && access(contents_path.c_str(), F_OK) == 0) { // If there's one file under Contents/Resources/DWARF then use that, // otherwise bail out. const vector entries = list_directory(contents_path); if (entries.size() == 0) { fprintf(stderr, "Unable to find DWARF-bearing file in bundle: %s\n", input_pathname_.c_str()); return false; } if (entries.size() > 1) { fprintf(stderr, "Too many DWARF files in bundle: %s\n", input_pathname_.c_str()); return false; } object_filename_ = entries[0]; } else { object_filename_ = input_pathname_; } // Read the file's contents into memory. bool read_ok = true; string error; if (stat(object_filename_.c_str(), &st) != -1) { FILE* f = fopen(object_filename_.c_str(), "rb"); if (f) { contents_.reset(new uint8_t[st.st_size]); off_t total = 0; while (total < st.st_size && !feof(f)) { size_t read = fread(&contents_[0] + total, 1, st.st_size - total, f); if (read == 0) { if (ferror(f)) { read_ok = false; error = strerror(errno); } break; } total += read; } fclose(f); } else { error = strerror(errno); } } if (!read_ok) { fprintf(stderr, "Error reading object file: %s: %s\n", object_filename_.c_str(), error.c_str()); return false; } // Get the list of object files present in the file. FatReader::Reporter fat_reporter(object_filename_); FatReader fat_reader(&fat_reporter); if (!fat_reader.Read(&contents_[0], st.st_size)) { return false; } // Get our own copy of fat_reader's object file list. size_t object_files_count; const SuperFatArch* object_files = fat_reader.object_files(&object_files_count); if (object_files_count == 0) { fprintf(stderr, "Fat binary file contains *no* architectures: %s\n", object_filename_.c_str()); return false; } object_files_.resize(object_files_count); memcpy(&object_files_[0], object_files, sizeof(SuperFatArch) * object_files_count); return true; } bool DumpSymbols::SetArchitecture(cpu_type_t cpu_type, cpu_subtype_t cpu_subtype) { // Find the best match for the architecture the user requested. const SuperFatArch* best_match = FindBestMatchForArchitecture( cpu_type, cpu_subtype); if (!best_match) return false; // Record the selected object file. selected_object_file_ = best_match; return true; } bool DumpSymbols::SetArchitecture(const std::string& arch_name) { bool arch_set = false; const NXArchInfo* arch_info = google_breakpad::BreakpadGetArchInfoFromName(arch_name.c_str()); if (arch_info) { arch_set = SetArchitecture(arch_info->cputype, arch_info->cpusubtype); } return arch_set; } SuperFatArch* DumpSymbols::FindBestMatchForArchitecture( cpu_type_t cpu_type, cpu_subtype_t cpu_subtype) { // Check if all the object files can be converted to struct fat_arch. bool can_convert_to_fat_arch = true; vector fat_arch_vector; for (vector::const_iterator it = object_files_.begin(); it != object_files_.end(); ++it) { struct fat_arch arch; bool success = it->ConvertToFatArch(&arch); if (!success) { can_convert_to_fat_arch = false; break; } fat_arch_vector.push_back(arch); } // If all the object files can be converted to struct fat_arch, use // NXFindBestFatArch. if (can_convert_to_fat_arch) { const struct fat_arch* best_match = NXFindBestFatArch(cpu_type, cpu_subtype, &fat_arch_vector[0], static_cast(fat_arch_vector.size())); for (size_t i = 0; i < fat_arch_vector.size(); ++i) { if (best_match == &fat_arch_vector[i]) return &object_files_[i]; } assert(best_match == NULL); return NULL; } // Check for an exact match with cpu_type and cpu_subtype. for (vector::iterator it = object_files_.begin(); it != object_files_.end(); ++it) { if (static_cast(it->cputype) == cpu_type && static_cast(it->cpusubtype) == cpu_subtype) return &*it; } // No exact match found. // TODO(erikchen): If it becomes necessary, we can copy the implementation of // NXFindBestFatArch, located at // http://web.mit.edu/darwin/src/modules/cctools/libmacho/arch.c. fprintf(stderr, "Failed to find an exact match for an object file with cpu " "type: %d and cpu subtype: %d. Furthermore, at least one object file is " "larger than 2**32.\n", cpu_type, cpu_subtype); return NULL; } string DumpSymbols::Identifier() { FileID file_id(object_filename_.c_str()); unsigned char identifier_bytes[16]; cpu_type_t cpu_type = selected_object_file_->cputype; cpu_subtype_t cpu_subtype = selected_object_file_->cpusubtype; if (!file_id.MachoIdentifier(cpu_type, cpu_subtype, identifier_bytes)) { fprintf(stderr, "Unable to calculate UUID of mach-o binary %s!\n", object_filename_.c_str()); return ""; } char identifier_string[40]; FileID::ConvertIdentifierToString(identifier_bytes, identifier_string, sizeof(identifier_string)); string compacted(identifier_string); for(size_t i = compacted.find('-'); i != string::npos; i = compacted.find('-', i)) compacted.erase(i, 1); return compacted; } // A range handler that accepts rangelist data parsed by // dwarf2reader::RangeListReader and populates a range vector (typically // owned by a function) with the results. class DumpSymbols::DumperRangesHandler: public DwarfCUToModule::RangesHandler { public: DumperRangesHandler(const uint8_t* buffer, uint64_t size, dwarf2reader::ByteReader* reader) : buffer_(buffer), size_(size), reader_(reader) { } bool ReadRanges(uint64_t offset, Module::Address base_address, vector* ranges) { DwarfRangeListHandler handler(base_address, ranges); dwarf2reader::RangeListReader rangelist_reader(buffer_, size_, reader_, &handler); return rangelist_reader.ReadRangeList(offset); } private: const uint8_t* buffer_; uint64_t size_; dwarf2reader::ByteReader* reader_; }; // A line-to-module loader that accepts line number info parsed by // dwarf2reader::LineInfo and populates a Module and a line vector // with the results. class DumpSymbols::DumperLineToModule: public DwarfCUToModule::LineToModuleHandler { public: // Create a line-to-module converter using BYTE_READER. DumperLineToModule(dwarf2reader::ByteReader* byte_reader) : byte_reader_(byte_reader) { } void StartCompilationUnit(const string& compilation_dir) { compilation_dir_ = compilation_dir; } void ReadProgram(const uint8_t* program, uint64_t length, const uint8_t* string_section, uint64_t string_section_length, const uint8_t* line_string_section, uint64_t line_string_section_length, Module* module, vector* lines) { DwarfLineToModule handler(module, compilation_dir_, lines); dwarf2reader::LineInfo parser(program, length, byte_reader_, nullptr, 0, nullptr, 0, &handler); parser.Start(); } private: string compilation_dir_; dwarf2reader::ByteReader* byte_reader_; // WEAK }; bool DumpSymbols::CreateEmptyModule(scoped_ptr& module) { // Select an object file, if SetArchitecture hasn't been called to set one // explicitly. if (!selected_object_file_) { // If there's only one architecture, that's the one. if (object_files_.size() == 1) selected_object_file_ = &object_files_[0]; else { // Look for an object file whose architecture matches our own. const NXArchInfo* local_arch = NXGetLocalArchInfo(); if (!SetArchitecture(local_arch->cputype, local_arch->cpusubtype)) { fprintf(stderr, "%s: object file contains more than one" " architecture, none of which match the current" " architecture; specify an architecture explicitly" " with '-a ARCH' to resolve the ambiguity\n", object_filename_.c_str()); return false; } } } assert(selected_object_file_); // Find the name of the selected file's architecture, to appear in // the MODULE record and in error messages. const NXArchInfo* selected_arch_info = google_breakpad::BreakpadGetArchInfoFromCpuType( selected_object_file_->cputype, selected_object_file_->cpusubtype); const char* selected_arch_name = selected_arch_info->name; if (strcmp(selected_arch_name, "i386") == 0) selected_arch_name = "x86"; // Produce a name to use in error messages that includes the // filename, and the architecture, if there is more than one. selected_object_name_ = object_filename_; if (object_files_.size() > 1) { selected_object_name_ += ", architecture "; selected_object_name_ + selected_arch_name; } // Compute a module name, to appear in the MODULE record. string module_name = google_breakpad::BaseName(object_filename_); // Choose an identifier string, to appear in the MODULE record. string identifier = Identifier(); if (identifier.empty()) return false; identifier += "0"; // Create a module to hold the debugging information. module.reset(new Module(module_name, "mac", selected_arch_name, identifier)); return true; } void DumpSymbols::ReadDwarf(google_breakpad::Module* module, const mach_o::Reader& macho_reader, const mach_o::SectionMap& dwarf_sections, bool handle_inter_cu_refs) const { // Build a byte reader of the appropriate endianness. ByteReader byte_reader(macho_reader.big_endian() ? dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE); // Construct a context for this file. DwarfCUToModule::FileContext file_context(selected_object_name_, module, handle_inter_cu_refs); // Build a dwarf2reader::SectionMap from our mach_o::SectionMap. for (mach_o::SectionMap::const_iterator it = dwarf_sections.begin(); it != dwarf_sections.end(); ++it) { file_context.AddSectionToSectionMap( it->first, it->second.contents.start, it->second.contents.Size()); } // Find the __debug_info section. dwarf2reader::SectionMap::const_iterator debug_info_entry = file_context.section_map().find("__debug_info"); // There had better be a __debug_info section! if (debug_info_entry == file_context.section_map().end()) { fprintf(stderr, "%s: __DWARF segment of file has no __debug_info section\n", selected_object_name_.c_str()); return; } const std::pair& debug_info_section = debug_info_entry->second; // Build a line-to-module loader for the root handler to use. DumperLineToModule line_to_module(&byte_reader); // Optional .debug_ranges reader scoped_ptr ranges_handler; dwarf2reader::SectionMap::const_iterator ranges_entry = file_context.section_map().find("__debug_ranges"); if (ranges_entry != file_context.section_map().end()) { const std::pair& ranges_section = ranges_entry->second; ranges_handler.reset( new DumperRangesHandler(ranges_section.first, ranges_section.second, &byte_reader)); } // Walk the __debug_info section, one compilation unit at a time. uint64_t debug_info_length = debug_info_section.second; for (uint64_t offset = 0; offset < debug_info_length;) { // Make a handler for the root DIE that populates MODULE with the // debug info. DwarfCUToModule::WarningReporter reporter(selected_object_name_, offset); DwarfCUToModule root_handler(&file_context, &line_to_module, ranges_handler.get(), &reporter); // Make a Dwarf2Handler that drives our DIEHandler. dwarf2reader::DIEDispatcher die_dispatcher(&root_handler); // Make a DWARF parser for the compilation unit at OFFSET. dwarf2reader::CompilationUnit dwarf_reader(selected_object_name_, file_context.section_map(), offset, &byte_reader, &die_dispatcher); // Process the entire compilation unit; get the offset of the next. offset += dwarf_reader.Start(); } } bool DumpSymbols::ReadCFI(google_breakpad::Module* module, const mach_o::Reader& macho_reader, const mach_o::Section& section, bool eh_frame) const { // Find the appropriate set of register names for this file's // architecture. vector register_names; switch (macho_reader.cpu_type()) { case CPU_TYPE_X86: register_names = DwarfCFIToModule::RegisterNames::I386(); break; case CPU_TYPE_X86_64: register_names = DwarfCFIToModule::RegisterNames::X86_64(); break; case CPU_TYPE_ARM: register_names = DwarfCFIToModule::RegisterNames::ARM(); break; case CPU_TYPE_ARM64: register_names = DwarfCFIToModule::RegisterNames::ARM64(); break; default: { const NXArchInfo* arch = google_breakpad::BreakpadGetArchInfoFromCpuType( macho_reader.cpu_type(), macho_reader.cpu_subtype()); fprintf(stderr, "%s: cannot convert DWARF call frame information for ", selected_object_name_.c_str()); if (arch) fprintf(stderr, "architecture '%s'", arch->name); else fprintf(stderr, "architecture %d,%d", macho_reader.cpu_type(), macho_reader.cpu_subtype()); fprintf(stderr, " to Breakpad symbol file: no register name table\n"); return false; } } // Find the call frame information and its size. const uint8_t* cfi = section.contents.start; size_t cfi_size = section.contents.Size(); // Plug together the parser, handler, and their entourages. DwarfCFIToModule::Reporter module_reporter(selected_object_name_, section.section_name); DwarfCFIToModule handler(module, register_names, &module_reporter); dwarf2reader::ByteReader byte_reader(macho_reader.big_endian() ? dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE); byte_reader.SetAddressSize(macho_reader.bits_64() ? 8 : 4); // At the moment, according to folks at Apple and some cursory // investigation, Mac OS X only uses DW_EH_PE_pcrel-based pointers, so // this is the only base address the CFI parser will need. byte_reader.SetCFIDataBase(section.address, cfi); dwarf2reader::CallFrameInfo::Reporter dwarf_reporter(selected_object_name_, section.section_name); dwarf2reader::CallFrameInfo parser(cfi, cfi_size, &byte_reader, &handler, &dwarf_reporter, eh_frame); parser.Start(); return true; } // A LoadCommandHandler that loads whatever debugging data it finds into a // Module. class DumpSymbols::LoadCommandDumper: public mach_o::Reader::LoadCommandHandler { public: // Create a load command dumper handling load commands from READER's // file, and adding data to MODULE. LoadCommandDumper(const DumpSymbols& dumper, google_breakpad::Module* module, const mach_o::Reader& reader, SymbolData symbol_data, bool handle_inter_cu_refs) : dumper_(dumper), module_(module), reader_(reader), symbol_data_(symbol_data), handle_inter_cu_refs_(handle_inter_cu_refs) { } bool SegmentCommand(const mach_o::Segment& segment); bool SymtabCommand(const ByteBuffer& entries, const ByteBuffer& strings); private: const DumpSymbols& dumper_; google_breakpad::Module* module_; // WEAK const mach_o::Reader& reader_; const SymbolData symbol_data_; const bool handle_inter_cu_refs_; }; bool DumpSymbols::LoadCommandDumper::SegmentCommand(const Segment& segment) { mach_o::SectionMap section_map; if (!reader_.MapSegmentSections(segment, §ion_map)) return false; if (segment.name == "__TEXT") { module_->SetLoadAddress(segment.vmaddr); if (symbol_data_ != NO_CFI) { mach_o::SectionMap::const_iterator eh_frame = section_map.find("__eh_frame"); if (eh_frame != section_map.end()) { // If there is a problem reading this, don't treat it as a fatal error. dumper_.ReadCFI(module_, reader_, eh_frame->second, true); } } return true; } if (segment.name == "__DWARF") { if (symbol_data_ != ONLY_CFI) { dumper_.ReadDwarf(module_, reader_, section_map, handle_inter_cu_refs_); } if (symbol_data_ != NO_CFI) { mach_o::SectionMap::const_iterator debug_frame = section_map.find("__debug_frame"); if (debug_frame != section_map.end()) { // If there is a problem reading this, don't treat it as a fatal error. dumper_.ReadCFI(module_, reader_, debug_frame->second, false); } } } return true; } bool DumpSymbols::LoadCommandDumper::SymtabCommand(const ByteBuffer& entries, const ByteBuffer& strings) { StabsToModule stabs_to_module(module_); // Mac OS X STABS are never "unitized", and the size of the 'value' field // matches the address size of the executable. StabsReader stabs_reader(entries.start, entries.Size(), strings.start, strings.Size(), reader_.big_endian(), reader_.bits_64() ? 8 : 4, true, &stabs_to_module); if (!stabs_reader.Process()) return false; stabs_to_module.Finalize(); return true; } bool DumpSymbols::ReadSymbolData(Module** out_module) { scoped_ptr module; if (!CreateEmptyModule(module)) return false; // Parse the selected object file. mach_o::Reader::Reporter reporter(selected_object_name_); mach_o::Reader reader(&reporter); if (!reader.Read(&contents_[0] + selected_object_file_->offset, selected_object_file_->size, selected_object_file_->cputype, selected_object_file_->cpusubtype)) return false; // Walk its load commands, and deal with whatever is there. LoadCommandDumper load_command_dumper(*this, module.get(), reader, symbol_data_, handle_inter_cu_refs_); if (!reader.WalkLoadCommands(&load_command_dumper)) return false; *out_module = module.release(); return true; } bool DumpSymbols::WriteSymbolFile(std::ostream& stream) { Module* module = NULL; if (ReadSymbolData(&module) && module) { bool res = module->Write(stream, symbol_data_); delete module; return res; } return false; } // Read the selected object file's debugging information, and write out the // header only to |stream|. Return true on success; if an error occurs, report // it and return false. bool DumpSymbols::WriteSymbolFileHeader(std::ostream& stream) { scoped_ptr module; if (!CreateEmptyModule(module)) return false; return module->Write(stream, symbol_data_); } } // namespace google_breakpad