// Copyright (c) 2013 Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // exploitability_linux.cc: Linux specific exploitability engine. // // Provides a guess at the exploitability of the crash for the Linux // platform given a minidump and process_state. // // Author: Matthew Riley #include "processor/exploitability_linux.h" #include #include "google_breakpad/common/minidump_exception_linux.h" #include "google_breakpad/processor/call_stack.h" #include "google_breakpad/processor/process_state.h" #include "google_breakpad/processor/stack_frame.h" #include "processor/logging.h" namespace { // This function in libc is called if the program was compiled with // -fstack-protector and a function's stack canary changes. const char kStackCheckFailureFunction[] = "__stack_chk_fail"; // This function in libc is called if the program was compiled with // -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime // can determine that the call would overflow the target buffer. const char kBoundsCheckFailureFunction[] = "__chk_fail"; } // namespace namespace google_breakpad { ExploitabilityLinux::ExploitabilityLinux(Minidump *dump, ProcessState *process_state) : Exploitability(dump, process_state) { } ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() { // Check the crashing thread for functions suggesting a buffer overflow or // stack smash. if (process_state_->requesting_thread() != -1) { CallStack* crashing_thread = process_state_->threads()->at(process_state_->requesting_thread()); const vector& crashing_thread_frames = *crashing_thread->frames(); for (size_t i = 0; i < crashing_thread_frames.size(); ++i) { if (crashing_thread_frames[i]->function_name == kStackCheckFailureFunction) { return EXPLOITABILITY_HIGH; } if (crashing_thread_frames[i]->function_name == kBoundsCheckFailureFunction) { return EXPLOITABILITY_HIGH; } } } // Getting exception data. (It should exist for all minidumps.) MinidumpException *exception = dump_->GetException(); if (exception == NULL) { BPLOG(INFO) << "No exception record."; return EXPLOITABILITY_ERR_PROCESSING; } const MDRawExceptionStream *raw_exception_stream = exception->exception(); if (raw_exception_stream == NULL) { BPLOG(INFO) << "No raw exception stream."; return EXPLOITABILITY_ERR_PROCESSING; } // Checking for benign exceptions that caused the crash. if (this->BenignCrashTrigger(raw_exception_stream)) { return EXPLOITABILITY_NONE; } // Check if the instruction pointer is in a valid instruction region // by finding if it maps to an executable part of memory. uint64_t instruction_ptr = 0; const MinidumpContext *context = exception->GetContext(); if (context == NULL) { BPLOG(INFO) << "No exception context."; return EXPLOITABILITY_ERR_PROCESSING; } if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) { BPLOG(INFO) << "Unsupported architecture."; return EXPLOITABILITY_ERR_PROCESSING; } // Getting the instruction pointer. if (!context->GetInstructionPointer(&instruction_ptr)) { BPLOG(INFO) << "Failed to retrieve instruction pointer."; return EXPLOITABILITY_ERR_PROCESSING; } // Checking for the instruction pointer in a valid instruction region. if (!this->InstructionPointerInCode(instruction_ptr)) { return EXPLOITABILITY_HIGH; } // There was no strong evidence suggesting exploitability, but the minidump // does not appear totally benign either. return EXPLOITABILITY_INTERESTING; } LinuxArchitectureType ExploitabilityLinux::ArchitectureType() { // GetContextCPU() should have already been successfully called before // calling this method. Thus there should be a raw exception stream for // the minidump. MinidumpException *exception = dump_->GetException(); const DumpContext *dump_context = exception ? exception->GetContext() : NULL; if (dump_context == NULL) { BPLOG(INFO) << "No raw dump context."; return UNSUPPORTED_ARCHITECTURE; } // Check the architecture type. switch (dump_context->GetContextCPU()) { case MD_CONTEXT_ARM: case MD_CONTEXT_X86: return LINUX_32_BIT; case MD_CONTEXT_ARM64: case MD_CONTEXT_AMD64: return LINUX_64_BIT; default: // This should not happen. The four architectures above should be // the only Linux architectures. BPLOG(INFO) << "Unsupported architecture."; return UNSUPPORTED_ARCHITECTURE; } } bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) { // Get memory mapping. Most minidumps will not contain a memory // mapping, so processing will commonly resort to checking modules. MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList(); const MinidumpMemoryInfo *mem_info = mem_info_list ? mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL; // Check if the memory mapping at the instruction pointer is executable. // If there is no memory mapping, processing will use modules as reference. if (mem_info != NULL) { return mem_info->IsExecutable(); } // If the memory mapping retrieval fails, check the modules // to see if the instruction pointer is inside a module. MinidumpModuleList *minidump_module_list = dump_->GetModuleList(); const MinidumpModule *minidump_module = minidump_module_list ? minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL; // If the instruction pointer isn't in a module, return false. if (minidump_module == NULL) { return false; } // Get ELF header data from the instruction pointer's module. const uint64_t base_address = minidump_module->base_address(); MinidumpMemoryList *memory_list = dump_->GetMemoryList(); MinidumpMemoryRegion *memory_region = memory_list ? memory_list->GetMemoryRegionForAddress(base_address) : NULL; // The minidump does not have the correct memory region. // This returns true because even though there is no memory data available, // the evidence so far suggests that the instruction pointer is not at a // bad location. if (memory_region == NULL) { return true; } // Examine ELF headers. Depending on the architecture, the size of the // ELF headers can differ. LinuxArchitectureType architecture = this->ArchitectureType(); if (architecture == LINUX_32_BIT) { // Check if the ELF header is within the memory region and if the // instruction pointer lies within the ELF header. if (memory_region->GetSize() < sizeof(Elf32_Ehdr) || instruction_ptr < base_address + sizeof(Elf32_Ehdr)) { return false; } // Load 32-bit ELF header. Elf32_Ehdr header; this->LoadElfHeader(memory_region, base_address, &header); // Check if the program header table is within the memory region, and // validate that the program header entry size is correct. if (header.e_phentsize != sizeof(Elf32_Phdr) || memory_region->GetSize() < header.e_phoff + ((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) { return false; } // Load 32-bit Program Header Table. scoped_array program_headers(new Elf32_Phdr[header.e_phnum]); this->LoadElfHeaderTable(memory_region, base_address + header.e_phoff, header.e_phnum, program_headers.get()); // Find correct program header that corresponds to the instruction pointer. for (int i = 0; i < header.e_phnum; i++) { const Elf32_Phdr& program_header = program_headers[i]; // Check if instruction pointer lies within this program header's region. if (instruction_ptr >= program_header.p_vaddr && instruction_ptr < program_header.p_vaddr + program_header.p_memsz) { // Return whether this program header region is executable. return program_header.p_flags & PF_X; } } } else if (architecture == LINUX_64_BIT) { // Check if the ELF header is within the memory region and if the // instruction pointer lies within the ELF header. if (memory_region->GetSize() < sizeof(Elf64_Ehdr) || instruction_ptr < base_address + sizeof(Elf64_Ehdr)) { return false; } // Load 64-bit ELF header. Elf64_Ehdr header; this->LoadElfHeader(memory_region, base_address, &header); // Check if the program header table is within the memory region, and // validate that the program header entry size is correct. if (header.e_phentsize != sizeof(Elf64_Phdr) || memory_region->GetSize() < header.e_phoff + ((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) { return false; } // Load 64-bit Program Header Table. scoped_array program_headers(new Elf64_Phdr[header.e_phnum]); this->LoadElfHeaderTable(memory_region, base_address + header.e_phoff, header.e_phnum, program_headers.get()); // Find correct program header that corresponds to the instruction pointer. for (int i = 0; i < header.e_phnum; i++) { const Elf64_Phdr& program_header = program_headers[i]; // Check if instruction pointer lies within this program header's region. if (instruction_ptr >= program_header.p_vaddr && instruction_ptr < program_header.p_vaddr + program_header.p_memsz) { // Return whether this program header region is executable. return program_header.p_flags & PF_X; } } } // The instruction pointer was not in an area identified by the ELF headers. return false; } bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream *raw_exception_stream) { // Check the cause of crash. // If the exception of the crash is a benign exception, // it is probably not exploitable. switch (raw_exception_stream->exception_record.exception_code) { case MD_EXCEPTION_CODE_LIN_SIGHUP: case MD_EXCEPTION_CODE_LIN_SIGINT: case MD_EXCEPTION_CODE_LIN_SIGQUIT: case MD_EXCEPTION_CODE_LIN_SIGTRAP: case MD_EXCEPTION_CODE_LIN_SIGABRT: case MD_EXCEPTION_CODE_LIN_SIGFPE: case MD_EXCEPTION_CODE_LIN_SIGKILL: case MD_EXCEPTION_CODE_LIN_SIGUSR1: case MD_EXCEPTION_CODE_LIN_SIGUSR2: case MD_EXCEPTION_CODE_LIN_SIGPIPE: case MD_EXCEPTION_CODE_LIN_SIGALRM: case MD_EXCEPTION_CODE_LIN_SIGTERM: case MD_EXCEPTION_CODE_LIN_SIGCHLD: case MD_EXCEPTION_CODE_LIN_SIGCONT: case MD_EXCEPTION_CODE_LIN_SIGSTOP: case MD_EXCEPTION_CODE_LIN_SIGTSTP: case MD_EXCEPTION_CODE_LIN_SIGTTIN: case MD_EXCEPTION_CODE_LIN_SIGTTOU: case MD_EXCEPTION_CODE_LIN_SIGURG: case MD_EXCEPTION_CODE_LIN_SIGXCPU: case MD_EXCEPTION_CODE_LIN_SIGXFSZ: case MD_EXCEPTION_CODE_LIN_SIGVTALRM: case MD_EXCEPTION_CODE_LIN_SIGPROF: case MD_EXCEPTION_CODE_LIN_SIGWINCH: case MD_EXCEPTION_CODE_LIN_SIGIO: case MD_EXCEPTION_CODE_LIN_SIGPWR: case MD_EXCEPTION_CODE_LIN_SIGSYS: case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED: return true; break; default: return false; break; } } } // namespace google_breakpad