// Copyright (c) 2010 Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // minidump.cc: A minidump reader. // // See minidump.h for documentation. // // Author: Mark Mentovai #include "google_breakpad/processor/minidump.h" #include #include #include #include #include #include #ifdef _WIN32 #include typedef SSIZE_T ssize_t; #define open _open #define read _read #define lseek _lseek #else // _WIN32 #define O_BINARY 0 #endif // _WIN32 #include #include #include #include #include #include "processor/range_map-inl.h" #include "processor/basic_code_module.h" #include "processor/basic_code_modules.h" #include "processor/logging.h" #include "processor/scoped_ptr.h" namespace google_breakpad { using std::istream; using std::ifstream; using std::numeric_limits; using std::vector; // // Swapping routines // // Inlining these doesn't increase code size significantly, and it saves // a whole lot of unnecessary jumping back and forth. // // Swapping an 8-bit quantity is a no-op. This function is only provided // to account for certain templatized operations that require swapping for // wider types but handle u_int8_t too // (MinidumpMemoryRegion::GetMemoryAtAddressInternal). static inline void Swap(u_int8_t* value) { } // Optimization: don't need to AND the furthest right shift, because we're // shifting an unsigned quantity. The standard requires zero-filling in this // case. If the quantities were signed, a bitmask whould be needed for this // right shift to avoid an arithmetic shift (which retains the sign bit). // The furthest left shift never needs to be ANDed bitmask. static inline void Swap(u_int16_t* value) { *value = (*value >> 8) | (*value << 8); } static inline void Swap(u_int32_t* value) { *value = (*value >> 24) | ((*value >> 8) & 0x0000ff00) | ((*value << 8) & 0x00ff0000) | (*value << 24); } static inline void Swap(u_int64_t* value) { u_int32_t* value32 = reinterpret_cast(value); Swap(&value32[0]); Swap(&value32[1]); u_int32_t temp = value32[0]; value32[0] = value32[1]; value32[1] = temp; } // Given a pointer to a 128-bit int in the minidump data, set the "low" // and "high" fields appropriately. static void Normalize128(u_int128_t* value, bool is_big_endian) { // The struct format is [high, low], so if the format is big-endian, // the most significant bytes will already be in the high field. if (!is_big_endian) { u_int64_t temp = value->low; value->low = value->high; value->high = temp; } } // This just swaps each int64 half of the 128-bit value. // The value should also be normalized by calling Normalize128(). static void Swap(u_int128_t* value) { Swap(&value->low); Swap(&value->high); } static inline void Swap(MDLocationDescriptor* location_descriptor) { Swap(&location_descriptor->data_size); Swap(&location_descriptor->rva); } static inline void Swap(MDMemoryDescriptor* memory_descriptor) { Swap(&memory_descriptor->start_of_memory_range); Swap(&memory_descriptor->memory); } static inline void Swap(MDGUID* guid) { Swap(&guid->data1); Swap(&guid->data2); Swap(&guid->data3); // Don't swap guid->data4[] because it contains 8-bit quantities. } // // Character conversion routines // // Standard wide-character conversion routines depend on the system's own // idea of what width a wide character should be: some use 16 bits, and // some use 32 bits. For the purposes of a minidump, wide strings are // always represented with 16-bit UTF-16 chracters. iconv isn't available // everywhere, and its interface varies where it is available. iconv also // deals purely with char* pointers, so in addition to considering the swap // parameter, a converter that uses iconv would also need to take the host // CPU's endianness into consideration. It doesn't seems worth the trouble // of making it a dependency when we don't care about anything but UTF-16. static string* UTF16ToUTF8(const vector& in, bool swap) { scoped_ptr out(new string()); // Set the string's initial capacity to the number of UTF-16 characters, // because the UTF-8 representation will always be at least this long. // If the UTF-8 representation is longer, the string will grow dynamically. out->reserve(in.size()); for (vector::const_iterator iterator = in.begin(); iterator != in.end(); ++iterator) { // Get a 16-bit value from the input u_int16_t in_word = *iterator; if (swap) Swap(&in_word); // Convert the input value (in_word) into a Unicode code point (unichar). u_int32_t unichar; if (in_word >= 0xdc00 && in_word <= 0xdcff) { BPLOG(ERROR) << "UTF16ToUTF8 found low surrogate " << HexString(in_word) << " without high"; return NULL; } else if (in_word >= 0xd800 && in_word <= 0xdbff) { // High surrogate. unichar = (in_word - 0xd7c0) << 10; if (++iterator == in.end()) { BPLOG(ERROR) << "UTF16ToUTF8 found high surrogate " << HexString(in_word) << " at end of string"; return NULL; } u_int32_t high_word = in_word; in_word = *iterator; if (in_word < 0xdc00 || in_word > 0xdcff) { BPLOG(ERROR) << "UTF16ToUTF8 found high surrogate " << HexString(high_word) << " without low " << HexString(in_word); return NULL; } unichar |= in_word & 0x03ff; } else { // The ordinary case, a single non-surrogate Unicode character encoded // as a single 16-bit value. unichar = in_word; } // Convert the Unicode code point (unichar) into its UTF-8 representation, // appending it to the out string. if (unichar < 0x80) { (*out) += unichar; } else if (unichar < 0x800) { (*out) += 0xc0 | (unichar >> 6); (*out) += 0x80 | (unichar & 0x3f); } else if (unichar < 0x10000) { (*out) += 0xe0 | (unichar >> 12); (*out) += 0x80 | ((unichar >> 6) & 0x3f); (*out) += 0x80 | (unichar & 0x3f); } else if (unichar < 0x200000) { (*out) += 0xf0 | (unichar >> 18); (*out) += 0x80 | ((unichar >> 12) & 0x3f); (*out) += 0x80 | ((unichar >> 6) & 0x3f); (*out) += 0x80 | (unichar & 0x3f); } else { BPLOG(ERROR) << "UTF16ToUTF8 cannot represent high value " << HexString(unichar) << " in UTF-8"; return NULL; } } return out.release(); } // Return the smaller of the number of code units in the UTF-16 string, // not including the terminating null word, or maxlen. static size_t UTF16codeunits(const u_int16_t *string, size_t maxlen) { size_t count = 0; while (count < maxlen && string[count] != 0) count++; return count; } // // MinidumpObject // MinidumpObject::MinidumpObject(Minidump* minidump) : minidump_(minidump), valid_(false) { } // // MinidumpStream // MinidumpStream::MinidumpStream(Minidump* minidump) : MinidumpObject(minidump) { } // // MinidumpContext // MinidumpContext::MinidumpContext(Minidump* minidump) : MinidumpStream(minidump), context_flags_(0), context_() { } MinidumpContext::~MinidumpContext() { FreeContext(); } bool MinidumpContext::Read(u_int32_t expected_size) { valid_ = false; FreeContext(); // First, figure out what type of CPU this context structure is for. // For some reason, the AMD64 Context doesn't have context_flags // at the beginning of the structure, so special case it here. if (expected_size == sizeof(MDRawContextAMD64)) { BPLOG(INFO) << "MinidumpContext: looks like AMD64 context"; scoped_ptr context_amd64(new MDRawContextAMD64()); if (!minidump_->ReadBytes(context_amd64.get(), sizeof(MDRawContextAMD64))) { BPLOG(ERROR) << "MinidumpContext could not read amd64 context"; return false; } if (minidump_->swap()) Swap(&context_amd64->context_flags); u_int32_t cpu_type = context_amd64->context_flags & MD_CONTEXT_CPU_MASK; if (cpu_type != MD_CONTEXT_AMD64) { //TODO: fall through to switch below? // need a Tell method to be able to SeekSet back to beginning // http://code.google.com/p/google-breakpad/issues/detail?id=224 BPLOG(ERROR) << "MinidumpContext not actually amd64 context"; return false; } // Do this after reading the entire MDRawContext structure because // GetSystemInfo may seek minidump to a new position. if (!CheckAgainstSystemInfo(cpu_type)) { BPLOG(ERROR) << "MinidumpContext amd64 does not match system info"; return false; } // Normalize the 128-bit types in the dump. // Since this is AMD64, by definition, the values are little-endian. for (unsigned int vr_index = 0; vr_index < MD_CONTEXT_AMD64_VR_COUNT; ++vr_index) Normalize128(&context_amd64->vector_register[vr_index], false); if (minidump_->swap()) { Swap(&context_amd64->p1_home); Swap(&context_amd64->p2_home); Swap(&context_amd64->p3_home); Swap(&context_amd64->p4_home); Swap(&context_amd64->p5_home); Swap(&context_amd64->p6_home); // context_flags is already swapped Swap(&context_amd64->mx_csr); Swap(&context_amd64->cs); Swap(&context_amd64->ds); Swap(&context_amd64->es); Swap(&context_amd64->fs); Swap(&context_amd64->ss); Swap(&context_amd64->eflags); Swap(&context_amd64->dr0); Swap(&context_amd64->dr1); Swap(&context_amd64->dr2); Swap(&context_amd64->dr3); Swap(&context_amd64->dr6); Swap(&context_amd64->dr7); Swap(&context_amd64->rax); Swap(&context_amd64->rcx); Swap(&context_amd64->rdx); Swap(&context_amd64->rbx); Swap(&context_amd64->rsp); Swap(&context_amd64->rbp); Swap(&context_amd64->rsi); Swap(&context_amd64->rdi); Swap(&context_amd64->r8); Swap(&context_amd64->r9); Swap(&context_amd64->r10); Swap(&context_amd64->r11); Swap(&context_amd64->r12); Swap(&context_amd64->r13); Swap(&context_amd64->r14); Swap(&context_amd64->r15); Swap(&context_amd64->rip); //FIXME: I'm not sure what actually determines // which member of the union {flt_save, sse_registers} // is valid. We're not currently using either, // but it would be good to have them swapped properly. for (unsigned int vr_index = 0; vr_index < MD_CONTEXT_AMD64_VR_COUNT; ++vr_index) Swap(&context_amd64->vector_register[vr_index]); Swap(&context_amd64->vector_control); Swap(&context_amd64->debug_control); Swap(&context_amd64->last_branch_to_rip); Swap(&context_amd64->last_branch_from_rip); Swap(&context_amd64->last_exception_to_rip); Swap(&context_amd64->last_exception_from_rip); } context_flags_ = context_amd64->context_flags; context_.amd64 = context_amd64.release(); } else { u_int32_t context_flags; if (!minidump_->ReadBytes(&context_flags, sizeof(context_flags))) { BPLOG(ERROR) << "MinidumpContext could not read context flags"; return false; } if (minidump_->swap()) Swap(&context_flags); u_int32_t cpu_type = context_flags & MD_CONTEXT_CPU_MASK; // Allocate the context structure for the correct CPU and fill it. The // casts are slightly unorthodox, but it seems better to do that than to // maintain a separate pointer for each type of CPU context structure // when only one of them will be used. switch (cpu_type) { case MD_CONTEXT_X86: { if (expected_size != sizeof(MDRawContextX86)) { BPLOG(ERROR) << "MinidumpContext x86 size mismatch, " << expected_size << " != " << sizeof(MDRawContextX86); return false; } scoped_ptr context_x86(new MDRawContextX86()); // Set the context_flags member, which has already been read, and // read the rest of the structure beginning with the first member // after context_flags. context_x86->context_flags = context_flags; size_t flags_size = sizeof(context_x86->context_flags); u_int8_t* context_after_flags = reinterpret_cast(context_x86.get()) + flags_size; if (!minidump_->ReadBytes(context_after_flags, sizeof(MDRawContextX86) - flags_size)) { BPLOG(ERROR) << "MinidumpContext could not read x86 context"; return false; } // Do this after reading the entire MDRawContext structure because // GetSystemInfo may seek minidump to a new position. if (!CheckAgainstSystemInfo(cpu_type)) { BPLOG(ERROR) << "MinidumpContext x86 does not match system info"; return false; } if (minidump_->swap()) { // context_x86->context_flags was already swapped. Swap(&context_x86->dr0); Swap(&context_x86->dr1); Swap(&context_x86->dr2); Swap(&context_x86->dr3); Swap(&context_x86->dr6); Swap(&context_x86->dr7); Swap(&context_x86->float_save.control_word); Swap(&context_x86->float_save.status_word); Swap(&context_x86->float_save.tag_word); Swap(&context_x86->float_save.error_offset); Swap(&context_x86->float_save.error_selector); Swap(&context_x86->float_save.data_offset); Swap(&context_x86->float_save.data_selector); // context_x86->float_save.register_area[] contains 8-bit quantities // and does not need to be swapped. Swap(&context_x86->float_save.cr0_npx_state); Swap(&context_x86->gs); Swap(&context_x86->fs); Swap(&context_x86->es); Swap(&context_x86->ds); Swap(&context_x86->edi); Swap(&context_x86->esi); Swap(&context_x86->ebx); Swap(&context_x86->edx); Swap(&context_x86->ecx); Swap(&context_x86->eax); Swap(&context_x86->ebp); Swap(&context_x86->eip); Swap(&context_x86->cs); Swap(&context_x86->eflags); Swap(&context_x86->esp); Swap(&context_x86->ss); // context_x86->extended_registers[] contains 8-bit quantities and // does not need to be swapped. } context_.x86 = context_x86.release(); break; } case MD_CONTEXT_PPC: { if (expected_size != sizeof(MDRawContextPPC)) { BPLOG(ERROR) << "MinidumpContext ppc size mismatch, " << expected_size << " != " << sizeof(MDRawContextPPC); return false; } scoped_ptr context_ppc(new MDRawContextPPC()); // Set the context_flags member, which has already been read, and // read the rest of the structure beginning with the first member // after context_flags. context_ppc->context_flags = context_flags; size_t flags_size = sizeof(context_ppc->context_flags); u_int8_t* context_after_flags = reinterpret_cast(context_ppc.get()) + flags_size; if (!minidump_->ReadBytes(context_after_flags, sizeof(MDRawContextPPC) - flags_size)) { BPLOG(ERROR) << "MinidumpContext could not read ppc context"; return false; } // Do this after reading the entire MDRawContext structure because // GetSystemInfo may seek minidump to a new position. if (!CheckAgainstSystemInfo(cpu_type)) { BPLOG(ERROR) << "MinidumpContext ppc does not match system info"; return false; } // Normalize the 128-bit types in the dump. // Since this is PowerPC, by definition, the values are big-endian. for (unsigned int vr_index = 0; vr_index < MD_VECTORSAVEAREA_PPC_VR_COUNT; ++vr_index) { Normalize128(&context_ppc->vector_save.save_vr[vr_index], true); } if (minidump_->swap()) { // context_ppc->context_flags was already swapped. Swap(&context_ppc->srr0); Swap(&context_ppc->srr1); for (unsigned int gpr_index = 0; gpr_index < MD_CONTEXT_PPC_GPR_COUNT; ++gpr_index) { Swap(&context_ppc->gpr[gpr_index]); } Swap(&context_ppc->cr); Swap(&context_ppc->xer); Swap(&context_ppc->lr); Swap(&context_ppc->ctr); Swap(&context_ppc->mq); Swap(&context_ppc->vrsave); for (unsigned int fpr_index = 0; fpr_index < MD_FLOATINGSAVEAREA_PPC_FPR_COUNT; ++fpr_index) { Swap(&context_ppc->float_save.fpregs[fpr_index]); } // Don't swap context_ppc->float_save.fpscr_pad because it is only // used for padding. Swap(&context_ppc->float_save.fpscr); for (unsigned int vr_index = 0; vr_index < MD_VECTORSAVEAREA_PPC_VR_COUNT; ++vr_index) { Swap(&context_ppc->vector_save.save_vr[vr_index]); } Swap(&context_ppc->vector_save.save_vscr); // Don't swap the padding fields in vector_save. Swap(&context_ppc->vector_save.save_vrvalid); } context_.ppc = context_ppc.release(); break; } case MD_CONTEXT_SPARC: { if (expected_size != sizeof(MDRawContextSPARC)) { BPLOG(ERROR) << "MinidumpContext sparc size mismatch, " << expected_size << " != " << sizeof(MDRawContextSPARC); return false; } scoped_ptr context_sparc(new MDRawContextSPARC()); // Set the context_flags member, which has already been read, and // read the rest of the structure beginning with the first member // after context_flags. context_sparc->context_flags = context_flags; size_t flags_size = sizeof(context_sparc->context_flags); u_int8_t* context_after_flags = reinterpret_cast(context_sparc.get()) + flags_size; if (!minidump_->ReadBytes(context_after_flags, sizeof(MDRawContextSPARC) - flags_size)) { BPLOG(ERROR) << "MinidumpContext could not read sparc context"; return false; } // Do this after reading the entire MDRawContext structure because // GetSystemInfo may seek minidump to a new position. if (!CheckAgainstSystemInfo(cpu_type)) { BPLOG(ERROR) << "MinidumpContext sparc does not match system info"; return false; } if (minidump_->swap()) { // context_sparc->context_flags was already swapped. for (unsigned int gpr_index = 0; gpr_index < MD_CONTEXT_SPARC_GPR_COUNT; ++gpr_index) { Swap(&context_sparc->g_r[gpr_index]); } Swap(&context_sparc->ccr); Swap(&context_sparc->pc); Swap(&context_sparc->npc); Swap(&context_sparc->y); Swap(&context_sparc->asi); Swap(&context_sparc->fprs); for (unsigned int fpr_index = 0; fpr_index < MD_FLOATINGSAVEAREA_SPARC_FPR_COUNT; ++fpr_index) { Swap(&context_sparc->float_save.regs[fpr_index]); } Swap(&context_sparc->float_save.filler); Swap(&context_sparc->float_save.fsr); } context_.ctx_sparc = context_sparc.release(); break; } case MD_CONTEXT_ARM: { if (expected_size != sizeof(MDRawContextARM)) { BPLOG(ERROR) << "MinidumpContext arm size mismatch, " << expected_size << " != " << sizeof(MDRawContextARM); return false; } scoped_ptr context_arm(new MDRawContextARM()); // Set the context_flags member, which has already been read, and // read the rest of the structure beginning with the first member // after context_flags. context_arm->context_flags = context_flags; size_t flags_size = sizeof(context_arm->context_flags); u_int8_t* context_after_flags = reinterpret_cast(context_arm.get()) + flags_size; if (!minidump_->ReadBytes(context_after_flags, sizeof(MDRawContextARM) - flags_size)) { BPLOG(ERROR) << "MinidumpContext could not read arm context"; return false; } // Do this after reading the entire MDRawContext structure because // GetSystemInfo may seek minidump to a new position. if (!CheckAgainstSystemInfo(cpu_type)) { BPLOG(ERROR) << "MinidumpContext arm does not match system info"; return false; } if (minidump_->swap()) { // context_arm->context_flags was already swapped. for (unsigned int ireg_index = 0; ireg_index < MD_CONTEXT_ARM_GPR_COUNT; ++ireg_index) { Swap(&context_arm->iregs[ireg_index]); } Swap(&context_arm->cpsr); Swap(&context_arm->float_save.fpscr); for (unsigned int fpr_index = 0; fpr_index < MD_FLOATINGSAVEAREA_ARM_FPR_COUNT; ++fpr_index) { Swap(&context_arm->float_save.regs[fpr_index]); } for (unsigned int fpe_index = 0; fpe_index < MD_FLOATINGSAVEAREA_ARM_FPEXTRA_COUNT; ++fpe_index) { Swap(&context_arm->float_save.extra[fpe_index]); } } context_.arm = context_arm.release(); break; } default: { // Unknown context type - Don't log as an error yet. Let the // caller work that out. BPLOG(INFO) << "MinidumpContext unknown context type " << HexString(cpu_type); return false; break; } } context_flags_ = context_flags; } valid_ = true; return true; } u_int32_t MinidumpContext::GetContextCPU() const { if (!valid_) { // Don't log a message, GetContextCPU can be legitimately called with // valid_ false by FreeContext, which is called by Read. return 0; } return context_flags_ & MD_CONTEXT_CPU_MASK; } const MDRawContextX86* MinidumpContext::GetContextX86() const { if (GetContextCPU() != MD_CONTEXT_X86) { BPLOG(ERROR) << "MinidumpContext cannot get x86 context"; return NULL; } return context_.x86; } const MDRawContextPPC* MinidumpContext::GetContextPPC() const { if (GetContextCPU() != MD_CONTEXT_PPC) { BPLOG(ERROR) << "MinidumpContext cannot get ppc context"; return NULL; } return context_.ppc; } const MDRawContextAMD64* MinidumpContext::GetContextAMD64() const { if (GetContextCPU() != MD_CONTEXT_AMD64) { BPLOG(ERROR) << "MinidumpContext cannot get amd64 context"; return NULL; } return context_.amd64; } const MDRawContextSPARC* MinidumpContext::GetContextSPARC() const { if (GetContextCPU() != MD_CONTEXT_SPARC) { BPLOG(ERROR) << "MinidumpContext cannot get sparc context"; return NULL; } return context_.ctx_sparc; } const MDRawContextARM* MinidumpContext::GetContextARM() const { if (GetContextCPU() != MD_CONTEXT_ARM) { BPLOG(ERROR) << "MinidumpContext cannot get arm context"; return NULL; } return context_.arm; } void MinidumpContext::FreeContext() { switch (GetContextCPU()) { case MD_CONTEXT_X86: delete context_.x86; break; case MD_CONTEXT_PPC: delete context_.ppc; break; case MD_CONTEXT_AMD64: delete context_.amd64; break; case MD_CONTEXT_SPARC: delete context_.ctx_sparc; break; case MD_CONTEXT_ARM: delete context_.arm; break; default: // There is no context record (valid_ is false) or there's a // context record for an unknown CPU (shouldn't happen, only known // records are stored by Read). break; } context_flags_ = 0; context_.base = NULL; } bool MinidumpContext::CheckAgainstSystemInfo(u_int32_t context_cpu_type) { // It's OK if the minidump doesn't contain an MD_SYSTEM_INFO_STREAM, // as this function just implements a sanity check. MinidumpSystemInfo* system_info = minidump_->GetSystemInfo(); if (!system_info) { BPLOG(INFO) << "MinidumpContext could not be compared against " "MinidumpSystemInfo"; return true; } // If there is an MD_SYSTEM_INFO_STREAM, it should contain valid system info. const MDRawSystemInfo* raw_system_info = system_info->system_info(); if (!raw_system_info) { BPLOG(INFO) << "MinidumpContext could not be compared against " "MDRawSystemInfo"; return false; } MDCPUArchitecture system_info_cpu_type = static_cast( raw_system_info->processor_architecture); // Compare the CPU type of the context record to the CPU type in the // minidump's system info stream. bool return_value = false; switch (context_cpu_type) { case MD_CONTEXT_X86: if (system_info_cpu_type == MD_CPU_ARCHITECTURE_X86 || system_info_cpu_type == MD_CPU_ARCHITECTURE_X86_WIN64 || system_info_cpu_type == MD_CPU_ARCHITECTURE_AMD64) { return_value = true; } break; case MD_CONTEXT_PPC: if (system_info_cpu_type == MD_CPU_ARCHITECTURE_PPC) return_value = true; break; case MD_CONTEXT_AMD64: if (system_info_cpu_type == MD_CPU_ARCHITECTURE_AMD64) return_value = true; break; case MD_CONTEXT_SPARC: if (system_info_cpu_type == MD_CPU_ARCHITECTURE_SPARC) return_value = true; break; case MD_CONTEXT_ARM: if (system_info_cpu_type == MD_CPU_ARCHITECTURE_ARM) return_value = true; break; } BPLOG_IF(ERROR, !return_value) << "MinidumpContext CPU " << HexString(context_cpu_type) << " wrong for MinidumpSysmtemInfo CPU " << HexString(system_info_cpu_type); return return_value; } void MinidumpContext::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpContext cannot print invalid data"; return; } switch (GetContextCPU()) { case MD_CONTEXT_X86: { const MDRawContextX86* context_x86 = GetContextX86(); printf("MDRawContextX86\n"); printf(" context_flags = 0x%x\n", context_x86->context_flags); printf(" dr0 = 0x%x\n", context_x86->dr0); printf(" dr1 = 0x%x\n", context_x86->dr1); printf(" dr2 = 0x%x\n", context_x86->dr2); printf(" dr3 = 0x%x\n", context_x86->dr3); printf(" dr6 = 0x%x\n", context_x86->dr6); printf(" dr7 = 0x%x\n", context_x86->dr7); printf(" float_save.control_word = 0x%x\n", context_x86->float_save.control_word); printf(" float_save.status_word = 0x%x\n", context_x86->float_save.status_word); printf(" float_save.tag_word = 0x%x\n", context_x86->float_save.tag_word); printf(" float_save.error_offset = 0x%x\n", context_x86->float_save.error_offset); printf(" float_save.error_selector = 0x%x\n", context_x86->float_save.error_selector); printf(" float_save.data_offset = 0x%x\n", context_x86->float_save.data_offset); printf(" float_save.data_selector = 0x%x\n", context_x86->float_save.data_selector); printf(" float_save.register_area[%2d] = 0x", MD_FLOATINGSAVEAREA_X86_REGISTERAREA_SIZE); for (unsigned int register_index = 0; register_index < MD_FLOATINGSAVEAREA_X86_REGISTERAREA_SIZE; ++register_index) { printf("%02x", context_x86->float_save.register_area[register_index]); } printf("\n"); printf(" float_save.cr0_npx_state = 0x%x\n", context_x86->float_save.cr0_npx_state); printf(" gs = 0x%x\n", context_x86->gs); printf(" fs = 0x%x\n", context_x86->fs); printf(" es = 0x%x\n", context_x86->es); printf(" ds = 0x%x\n", context_x86->ds); printf(" edi = 0x%x\n", context_x86->edi); printf(" esi = 0x%x\n", context_x86->esi); printf(" ebx = 0x%x\n", context_x86->ebx); printf(" edx = 0x%x\n", context_x86->edx); printf(" ecx = 0x%x\n", context_x86->ecx); printf(" eax = 0x%x\n", context_x86->eax); printf(" ebp = 0x%x\n", context_x86->ebp); printf(" eip = 0x%x\n", context_x86->eip); printf(" cs = 0x%x\n", context_x86->cs); printf(" eflags = 0x%x\n", context_x86->eflags); printf(" esp = 0x%x\n", context_x86->esp); printf(" ss = 0x%x\n", context_x86->ss); printf(" extended_registers[%3d] = 0x", MD_CONTEXT_X86_EXTENDED_REGISTERS_SIZE); for (unsigned int register_index = 0; register_index < MD_CONTEXT_X86_EXTENDED_REGISTERS_SIZE; ++register_index) { printf("%02x", context_x86->extended_registers[register_index]); } printf("\n\n"); break; } case MD_CONTEXT_PPC: { const MDRawContextPPC* context_ppc = GetContextPPC(); printf("MDRawContextPPC\n"); printf(" context_flags = 0x%x\n", context_ppc->context_flags); printf(" srr0 = 0x%x\n", context_ppc->srr0); printf(" srr1 = 0x%x\n", context_ppc->srr1); for (unsigned int gpr_index = 0; gpr_index < MD_CONTEXT_PPC_GPR_COUNT; ++gpr_index) { printf(" gpr[%2d] = 0x%x\n", gpr_index, context_ppc->gpr[gpr_index]); } printf(" cr = 0x%x\n", context_ppc->cr); printf(" xer = 0x%x\n", context_ppc->xer); printf(" lr = 0x%x\n", context_ppc->lr); printf(" ctr = 0x%x\n", context_ppc->ctr); printf(" mq = 0x%x\n", context_ppc->mq); printf(" vrsave = 0x%x\n", context_ppc->vrsave); for (unsigned int fpr_index = 0; fpr_index < MD_FLOATINGSAVEAREA_PPC_FPR_COUNT; ++fpr_index) { printf(" float_save.fpregs[%2d] = 0x%" PRIx64 "\n", fpr_index, context_ppc->float_save.fpregs[fpr_index]); } printf(" float_save.fpscr = 0x%x\n", context_ppc->float_save.fpscr); // TODO(mmentovai): print the 128-bit quantities in // context_ppc->vector_save. This isn't done yet because printf // doesn't support 128-bit quantities, and printing them using // PRIx64 as two 64-bit quantities requires knowledge of the CPU's // byte ordering. printf(" vector_save.save_vrvalid = 0x%x\n", context_ppc->vector_save.save_vrvalid); printf("\n"); break; } case MD_CONTEXT_AMD64: { const MDRawContextAMD64* context_amd64 = GetContextAMD64(); printf("MDRawContextAMD64\n"); printf(" p1_home = 0x%" PRIx64 "\n", context_amd64->p1_home); printf(" p2_home = 0x%" PRIx64 "\n", context_amd64->p2_home); printf(" p3_home = 0x%" PRIx64 "\n", context_amd64->p3_home); printf(" p4_home = 0x%" PRIx64 "\n", context_amd64->p4_home); printf(" p5_home = 0x%" PRIx64 "\n", context_amd64->p5_home); printf(" p6_home = 0x%" PRIx64 "\n", context_amd64->p6_home); printf(" context_flags = 0x%x\n", context_amd64->context_flags); printf(" mx_csr = 0x%x\n", context_amd64->mx_csr); printf(" cs = 0x%x\n", context_amd64->cs); printf(" ds = 0x%x\n", context_amd64->ds); printf(" es = 0x%x\n", context_amd64->es); printf(" fs = 0x%x\n", context_amd64->fs); printf(" gs = 0x%x\n", context_amd64->gs); printf(" ss = 0x%x\n", context_amd64->ss); printf(" eflags = 0x%x\n", context_amd64->eflags); printf(" dr0 = 0x%" PRIx64 "\n", context_amd64->dr0); printf(" dr1 = 0x%" PRIx64 "\n", context_amd64->dr1); printf(" dr2 = 0x%" PRIx64 "\n", context_amd64->dr2); printf(" dr3 = 0x%" PRIx64 "\n", context_amd64->dr3); printf(" dr6 = 0x%" PRIx64 "\n", context_amd64->dr6); printf(" dr7 = 0x%" PRIx64 "\n", context_amd64->dr7); printf(" rax = 0x%" PRIx64 "\n", context_amd64->rax); printf(" rcx = 0x%" PRIx64 "\n", context_amd64->rcx); printf(" rdx = 0x%" PRIx64 "\n", context_amd64->rdx); printf(" rbx = 0x%" PRIx64 "\n", context_amd64->rbx); printf(" rsp = 0x%" PRIx64 "\n", context_amd64->rsp); printf(" rbp = 0x%" PRIx64 "\n", context_amd64->rbp); printf(" rsi = 0x%" PRIx64 "\n", context_amd64->rsi); printf(" rdi = 0x%" PRIx64 "\n", context_amd64->rdi); printf(" r8 = 0x%" PRIx64 "\n", context_amd64->r8); printf(" r9 = 0x%" PRIx64 "\n", context_amd64->r9); printf(" r10 = 0x%" PRIx64 "\n", context_amd64->r10); printf(" r11 = 0x%" PRIx64 "\n", context_amd64->r11); printf(" r12 = 0x%" PRIx64 "\n", context_amd64->r12); printf(" r13 = 0x%" PRIx64 "\n", context_amd64->r13); printf(" r14 = 0x%" PRIx64 "\n", context_amd64->r14); printf(" r15 = 0x%" PRIx64 "\n", context_amd64->r15); printf(" rip = 0x%" PRIx64 "\n", context_amd64->rip); //TODO: print xmm, vector, debug registers printf("\n"); break; } case MD_CONTEXT_SPARC: { const MDRawContextSPARC* context_sparc = GetContextSPARC(); printf("MDRawContextSPARC\n"); printf(" context_flags = 0x%x\n", context_sparc->context_flags); for (unsigned int g_r_index = 0; g_r_index < MD_CONTEXT_SPARC_GPR_COUNT; ++g_r_index) { printf(" g_r[%2d] = 0x%" PRIx64 "\n", g_r_index, context_sparc->g_r[g_r_index]); } printf(" ccr = 0x%" PRIx64 "\n", context_sparc->ccr); printf(" pc = 0x%" PRIx64 "\n", context_sparc->pc); printf(" npc = 0x%" PRIx64 "\n", context_sparc->npc); printf(" y = 0x%" PRIx64 "\n", context_sparc->y); printf(" asi = 0x%" PRIx64 "\n", context_sparc->asi); printf(" fprs = 0x%" PRIx64 "\n", context_sparc->fprs); for (unsigned int fpr_index = 0; fpr_index < MD_FLOATINGSAVEAREA_SPARC_FPR_COUNT; ++fpr_index) { printf(" float_save.regs[%2d] = 0x%" PRIx64 "\n", fpr_index, context_sparc->float_save.regs[fpr_index]); } printf(" float_save.filler = 0x%" PRIx64 "\n", context_sparc->float_save.filler); printf(" float_save.fsr = 0x%" PRIx64 "\n", context_sparc->float_save.fsr); break; } case MD_CONTEXT_ARM: { const MDRawContextARM* context_arm = GetContextARM(); printf("MDRawContextARM\n"); printf(" context_flags = 0x%x\n", context_arm->context_flags); for (unsigned int ireg_index = 0; ireg_index < MD_CONTEXT_ARM_GPR_COUNT; ++ireg_index) { printf(" iregs[%2d] = 0x%x\n", ireg_index, context_arm->iregs[ireg_index]); } printf(" cpsr = 0x%x\n", context_arm->cpsr); printf(" float_save.fpscr = 0x%" PRIx64 "\n", context_arm->float_save.fpscr); for (unsigned int fpr_index = 0; fpr_index < MD_FLOATINGSAVEAREA_ARM_FPR_COUNT; ++fpr_index) { printf(" float_save.regs[%2d] = 0x%" PRIx64 "\n", fpr_index, context_arm->float_save.regs[fpr_index]); } for (unsigned int fpe_index = 0; fpe_index < MD_FLOATINGSAVEAREA_ARM_FPEXTRA_COUNT; ++fpe_index) { printf(" float_save.extra[%2d] = 0x%" PRIx32 "\n", fpe_index, context_arm->float_save.extra[fpe_index]); } break; } default: { break; } } } // // MinidumpMemoryRegion // u_int32_t MinidumpMemoryRegion::max_bytes_ = 1024 * 1024; // 1MB MinidumpMemoryRegion::MinidumpMemoryRegion(Minidump* minidump) : MinidumpObject(minidump), descriptor_(NULL), memory_(NULL) { } MinidumpMemoryRegion::~MinidumpMemoryRegion() { delete memory_; } void MinidumpMemoryRegion::SetDescriptor(MDMemoryDescriptor* descriptor) { descriptor_ = descriptor; valid_ = descriptor && descriptor_->memory.data_size <= numeric_limits::max() - descriptor_->start_of_memory_range; } const u_int8_t* MinidumpMemoryRegion::GetMemory() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpMemoryRegion for GetMemory"; return NULL; } if (!memory_) { if (descriptor_->memory.data_size == 0) { BPLOG(ERROR) << "MinidumpMemoryRegion is empty"; return NULL; } if (!minidump_->SeekSet(descriptor_->memory.rva)) { BPLOG(ERROR) << "MinidumpMemoryRegion could not seek to memory region"; return NULL; } if (descriptor_->memory.data_size > max_bytes_) { BPLOG(ERROR) << "MinidumpMemoryRegion size " << descriptor_->memory.data_size << " exceeds maximum " << max_bytes_; return NULL; } scoped_ptr< vector > memory( new vector(descriptor_->memory.data_size)); if (!minidump_->ReadBytes(&(*memory)[0], descriptor_->memory.data_size)) { BPLOG(ERROR) << "MinidumpMemoryRegion could not read memory region"; return NULL; } memory_ = memory.release(); } return &(*memory_)[0]; } u_int64_t MinidumpMemoryRegion::GetBase() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpMemoryRegion for GetBase"; return static_cast(-1); } return descriptor_->start_of_memory_range; } u_int32_t MinidumpMemoryRegion::GetSize() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpMemoryRegion for GetSize"; return 0; } return descriptor_->memory.data_size; } void MinidumpMemoryRegion::FreeMemory() { delete memory_; memory_ = NULL; } template bool MinidumpMemoryRegion::GetMemoryAtAddressInternal(u_int64_t address, T* value) const { BPLOG_IF(ERROR, !value) << "MinidumpMemoryRegion::GetMemoryAtAddressInternal " "requires |value|"; assert(value); *value = 0; if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpMemoryRegion for " "GetMemoryAtAddressInternal"; return false; } // Common failure case if (address < descriptor_->start_of_memory_range || sizeof(T) > numeric_limits::max() - address || address + sizeof(T) > descriptor_->start_of_memory_range + descriptor_->memory.data_size) { BPLOG(INFO) << "MinidumpMemoryRegion request out of range: " << HexString(address) << "+" << sizeof(T) << "/" << HexString(descriptor_->start_of_memory_range) << "+" << HexString(descriptor_->memory.data_size); return false; } const u_int8_t* memory = GetMemory(); if (!memory) { // GetMemory already logged a perfectly good message. return false; } // If the CPU requires memory accesses to be aligned, this can crash. // x86 and ppc are able to cope, though. *value = *reinterpret_cast( &memory[address - descriptor_->start_of_memory_range]); if (minidump_->swap()) Swap(value); return true; } bool MinidumpMemoryRegion::GetMemoryAtAddress(u_int64_t address, u_int8_t* value) const { return GetMemoryAtAddressInternal(address, value); } bool MinidumpMemoryRegion::GetMemoryAtAddress(u_int64_t address, u_int16_t* value) const { return GetMemoryAtAddressInternal(address, value); } bool MinidumpMemoryRegion::GetMemoryAtAddress(u_int64_t address, u_int32_t* value) const { return GetMemoryAtAddressInternal(address, value); } bool MinidumpMemoryRegion::GetMemoryAtAddress(u_int64_t address, u_int64_t* value) const { return GetMemoryAtAddressInternal(address, value); } void MinidumpMemoryRegion::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpMemoryRegion cannot print invalid data"; return; } const u_int8_t* memory = GetMemory(); if (memory) { printf("0x"); for (unsigned int byte_index = 0; byte_index < descriptor_->memory.data_size; byte_index++) { printf("%02x", memory[byte_index]); } printf("\n"); } else { printf("No memory\n"); } } // // MinidumpThread // MinidumpThread::MinidumpThread(Minidump* minidump) : MinidumpObject(minidump), thread_(), memory_(NULL), context_(NULL) { } MinidumpThread::~MinidumpThread() { delete memory_; delete context_; } bool MinidumpThread::Read() { // Invalidate cached data. delete memory_; memory_ = NULL; delete context_; context_ = NULL; valid_ = false; if (!minidump_->ReadBytes(&thread_, sizeof(thread_))) { BPLOG(ERROR) << "MinidumpThread cannot read thread"; return false; } if (minidump_->swap()) { Swap(&thread_.thread_id); Swap(&thread_.suspend_count); Swap(&thread_.priority_class); Swap(&thread_.priority); Swap(&thread_.teb); Swap(&thread_.stack); Swap(&thread_.thread_context); } // Check for base + size overflow or undersize. if (thread_.stack.memory.data_size == 0 || thread_.stack.memory.data_size > numeric_limits::max() - thread_.stack.start_of_memory_range) { BPLOG(ERROR) << "MinidumpThread has a memory region problem, " << HexString(thread_.stack.start_of_memory_range) << "+" << HexString(thread_.stack.memory.data_size); return false; } memory_ = new MinidumpMemoryRegion(minidump_); memory_->SetDescriptor(&thread_.stack); valid_ = true; return true; } MinidumpMemoryRegion* MinidumpThread::GetMemory() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpThread for GetMemory"; return NULL; } return memory_; } MinidumpContext* MinidumpThread::GetContext() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpThread for GetContext"; return NULL; } if (!context_) { if (!minidump_->SeekSet(thread_.thread_context.rva)) { BPLOG(ERROR) << "MinidumpThread cannot seek to context"; return NULL; } scoped_ptr context(new MinidumpContext(minidump_)); if (!context->Read(thread_.thread_context.data_size)) { BPLOG(ERROR) << "MinidumpThread cannot read context"; return NULL; } context_ = context.release(); } return context_; } bool MinidumpThread::GetThreadID(u_int32_t *thread_id) const { BPLOG_IF(ERROR, !thread_id) << "MinidumpThread::GetThreadID requires " "|thread_id|"; assert(thread_id); *thread_id = 0; if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpThread for GetThreadID"; return false; } *thread_id = thread_.thread_id; return true; } void MinidumpThread::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpThread cannot print invalid data"; return; } printf("MDRawThread\n"); printf(" thread_id = 0x%x\n", thread_.thread_id); printf(" suspend_count = %d\n", thread_.suspend_count); printf(" priority_class = 0x%x\n", thread_.priority_class); printf(" priority = 0x%x\n", thread_.priority); printf(" teb = 0x%" PRIx64 "\n", thread_.teb); printf(" stack.start_of_memory_range = 0x%" PRIx64 "\n", thread_.stack.start_of_memory_range); printf(" stack.memory.data_size = 0x%x\n", thread_.stack.memory.data_size); printf(" stack.memory.rva = 0x%x\n", thread_.stack.memory.rva); printf(" thread_context.data_size = 0x%x\n", thread_.thread_context.data_size); printf(" thread_context.rva = 0x%x\n", thread_.thread_context.rva); MinidumpContext* context = GetContext(); if (context) { printf("\n"); context->Print(); } else { printf(" (no context)\n"); printf("\n"); } MinidumpMemoryRegion* memory = GetMemory(); if (memory) { printf("Stack\n"); memory->Print(); } else { printf("No stack\n"); } printf("\n"); } // // MinidumpThreadList // u_int32_t MinidumpThreadList::max_threads_ = 4096; MinidumpThreadList::MinidumpThreadList(Minidump* minidump) : MinidumpStream(minidump), id_to_thread_map_(), threads_(NULL), thread_count_(0) { } MinidumpThreadList::~MinidumpThreadList() { delete threads_; } bool MinidumpThreadList::Read(u_int32_t expected_size) { // Invalidate cached data. id_to_thread_map_.clear(); delete threads_; threads_ = NULL; thread_count_ = 0; valid_ = false; u_int32_t thread_count; if (expected_size < sizeof(thread_count)) { BPLOG(ERROR) << "MinidumpThreadList count size mismatch, " << expected_size << " < " << sizeof(thread_count); return false; } if (!minidump_->ReadBytes(&thread_count, sizeof(thread_count))) { BPLOG(ERROR) << "MinidumpThreadList cannot read thread count"; return false; } if (minidump_->swap()) Swap(&thread_count); if (thread_count > numeric_limits::max() / sizeof(MDRawThread)) { BPLOG(ERROR) << "MinidumpThreadList thread count " << thread_count << " would cause multiplication overflow"; return false; } if (expected_size != sizeof(thread_count) + thread_count * sizeof(MDRawThread)) { // may be padded with 4 bytes on 64bit ABIs for alignment if (expected_size == sizeof(thread_count) + 4 + thread_count * sizeof(MDRawThread)) { u_int32_t useless; if (!minidump_->ReadBytes(&useless, 4)) { BPLOG(ERROR) << "MinidumpThreadList cannot read threadlist padded bytes"; return false; } } else { BPLOG(ERROR) << "MinidumpThreadList size mismatch, " << expected_size << " != " << sizeof(thread_count) + thread_count * sizeof(MDRawThread); return false; } } if (thread_count > max_threads_) { BPLOG(ERROR) << "MinidumpThreadList count " << thread_count << " exceeds maximum " << max_threads_; return false; } if (thread_count != 0) { scoped_ptr threads( new MinidumpThreads(thread_count, MinidumpThread(minidump_))); for (unsigned int thread_index = 0; thread_index < thread_count; ++thread_index) { MinidumpThread* thread = &(*threads)[thread_index]; // Assume that the file offset is correct after the last read. if (!thread->Read()) { BPLOG(ERROR) << "MinidumpThreadList cannot read thread " << thread_index << "/" << thread_count; return false; } u_int32_t thread_id; if (!thread->GetThreadID(&thread_id)) { BPLOG(ERROR) << "MinidumpThreadList cannot get thread ID for thread " << thread_index << "/" << thread_count; return false; } if (GetThreadByID(thread_id)) { // Another thread with this ID is already in the list. Data error. BPLOG(ERROR) << "MinidumpThreadList found multiple threads with ID " << HexString(thread_id) << " at thread " << thread_index << "/" << thread_count; return false; } id_to_thread_map_[thread_id] = thread; } threads_ = threads.release(); } thread_count_ = thread_count; valid_ = true; return true; } MinidumpThread* MinidumpThreadList::GetThreadAtIndex(unsigned int index) const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpThreadList for GetThreadAtIndex"; return NULL; } if (index >= thread_count_) { BPLOG(ERROR) << "MinidumpThreadList index out of range: " << index << "/" << thread_count_; return NULL; } return &(*threads_)[index]; } MinidumpThread* MinidumpThreadList::GetThreadByID(u_int32_t thread_id) { // Don't check valid_. Read calls this method before everything is // validated. It is safe to not check valid_ here. return id_to_thread_map_[thread_id]; } void MinidumpThreadList::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpThreadList cannot print invalid data"; return; } printf("MinidumpThreadList\n"); printf(" thread_count = %d\n", thread_count_); printf("\n"); for (unsigned int thread_index = 0; thread_index < thread_count_; ++thread_index) { printf("thread[%d]\n", thread_index); (*threads_)[thread_index].Print(); } } // // MinidumpModule // u_int32_t MinidumpModule::max_cv_bytes_ = 32768; u_int32_t MinidumpModule::max_misc_bytes_ = 32768; MinidumpModule::MinidumpModule(Minidump* minidump) : MinidumpObject(minidump), module_valid_(false), has_debug_info_(false), module_(), name_(NULL), cv_record_(NULL), cv_record_signature_(MD_CVINFOUNKNOWN_SIGNATURE), misc_record_(NULL) { } MinidumpModule::~MinidumpModule() { delete name_; delete cv_record_; delete misc_record_; } bool MinidumpModule::Read() { // Invalidate cached data. delete name_; name_ = NULL; delete cv_record_; cv_record_ = NULL; cv_record_signature_ = MD_CVINFOUNKNOWN_SIGNATURE; delete misc_record_; misc_record_ = NULL; module_valid_ = false; has_debug_info_ = false; valid_ = false; if (!minidump_->ReadBytes(&module_, MD_MODULE_SIZE)) { BPLOG(ERROR) << "MinidumpModule cannot read module"; return false; } if (minidump_->swap()) { Swap(&module_.base_of_image); Swap(&module_.size_of_image); Swap(&module_.checksum); Swap(&module_.time_date_stamp); Swap(&module_.module_name_rva); Swap(&module_.version_info.signature); Swap(&module_.version_info.struct_version); Swap(&module_.version_info.file_version_hi); Swap(&module_.version_info.file_version_lo); Swap(&module_.version_info.product_version_hi); Swap(&module_.version_info.product_version_lo); Swap(&module_.version_info.file_flags_mask); Swap(&module_.version_info.file_flags); Swap(&module_.version_info.file_os); Swap(&module_.version_info.file_type); Swap(&module_.version_info.file_subtype); Swap(&module_.version_info.file_date_hi); Swap(&module_.version_info.file_date_lo); Swap(&module_.cv_record); Swap(&module_.misc_record); // Don't swap reserved fields because their contents are unknown (as // are their proper widths). } // Check for base + size overflow or undersize. if (module_.size_of_image == 0 || module_.size_of_image > numeric_limits::max() - module_.base_of_image) { BPLOG(ERROR) << "MinidumpModule has a module problem, " << HexString(module_.base_of_image) << "+" << HexString(module_.size_of_image); return false; } module_valid_ = true; return true; } bool MinidumpModule::ReadAuxiliaryData() { if (!module_valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for ReadAuxiliaryData"; return false; } // Each module must have a name. name_ = minidump_->ReadString(module_.module_name_rva); if (!name_) { BPLOG(ERROR) << "MinidumpModule could not read name"; return false; } // At this point, we have enough info for the module to be valid. valid_ = true; // CodeView and miscellaneous debug records are only required if the // module indicates that they exist. if (module_.cv_record.data_size && !GetCVRecord(NULL)) { BPLOG(ERROR) << "MinidumpModule has no CodeView record, " "but one was expected"; return false; } if (module_.misc_record.data_size && !GetMiscRecord(NULL)) { BPLOG(ERROR) << "MinidumpModule has no miscellaneous debug record, " "but one was expected"; return false; } has_debug_info_ = true; return true; } string MinidumpModule::code_file() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for code_file"; return ""; } return *name_; } string MinidumpModule::code_identifier() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for code_identifier"; return ""; } if (!has_debug_info_) return ""; MinidumpSystemInfo *minidump_system_info = minidump_->GetSystemInfo(); if (!minidump_system_info) { BPLOG(ERROR) << "MinidumpModule code_identifier requires " "MinidumpSystemInfo"; return ""; } const MDRawSystemInfo *raw_system_info = minidump_system_info->system_info(); if (!raw_system_info) { BPLOG(ERROR) << "MinidumpModule code_identifier requires MDRawSystemInfo"; return ""; } string identifier; switch (raw_system_info->platform_id) { case MD_OS_WIN32_NT: case MD_OS_WIN32_WINDOWS: { // Use the same format that the MS symbol server uses in filesystem // hierarchies. char identifier_string[17]; snprintf(identifier_string, sizeof(identifier_string), "%08X%x", module_.time_date_stamp, module_.size_of_image); identifier = identifier_string; break; } case MD_OS_MAC_OS_X: case MD_OS_SOLARIS: case MD_OS_LINUX: { // TODO(mmentovai): support uuid extension if present, otherwise fall // back to version (from LC_ID_DYLIB?), otherwise fall back to something // else. identifier = "id"; break; } default: { // Without knowing what OS generated the dump, we can't generate a good // identifier. Return an empty string, signalling failure. BPLOG(ERROR) << "MinidumpModule code_identifier requires known platform, " "found " << HexString(raw_system_info->platform_id); break; } } return identifier; } string MinidumpModule::debug_file() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for debug_file"; return ""; } if (!has_debug_info_) return ""; string file; // Prefer the CodeView record if present. if (cv_record_) { if (cv_record_signature_ == MD_CVINFOPDB70_SIGNATURE) { // It's actually an MDCVInfoPDB70 structure. const MDCVInfoPDB70* cv_record_70 = reinterpret_cast(&(*cv_record_)[0]); assert(cv_record_70->cv_signature == MD_CVINFOPDB70_SIGNATURE); // GetCVRecord guarantees pdb_file_name is null-terminated. file = reinterpret_cast(cv_record_70->pdb_file_name); } else if (cv_record_signature_ == MD_CVINFOPDB20_SIGNATURE) { // It's actually an MDCVInfoPDB20 structure. const MDCVInfoPDB20* cv_record_20 = reinterpret_cast(&(*cv_record_)[0]); assert(cv_record_20->cv_header.signature == MD_CVINFOPDB20_SIGNATURE); // GetCVRecord guarantees pdb_file_name is null-terminated. file = reinterpret_cast(cv_record_20->pdb_file_name); } // If there's a CodeView record but it doesn't match a known signature, // try the miscellaneous record. } if (file.empty()) { // No usable CodeView record. Try the miscellaneous debug record. if (misc_record_) { const MDImageDebugMisc* misc_record = reinterpret_cast(&(*misc_record_)[0]); if (!misc_record->unicode) { // If it's not Unicode, just stuff it into the string. It's unclear // if misc_record->data is 0-terminated, so use an explicit size. file = string( reinterpret_cast(misc_record->data), module_.misc_record.data_size - MDImageDebugMisc_minsize); } else { // There's a misc_record but it encodes the debug filename in UTF-16. // (Actually, because miscellaneous records are so old, it's probably // UCS-2.) Convert it to UTF-8 for congruity with the other strings // that this method (and all other methods in the Minidump family) // return. unsigned int bytes = module_.misc_record.data_size - MDImageDebugMisc_minsize; if (bytes % 2 == 0) { unsigned int utf16_words = bytes / 2; // UTF16ToUTF8 expects a vector, so create a temporary one // and copy the UTF-16 data into it. vector string_utf16(utf16_words); if (utf16_words) memcpy(&string_utf16[0], &misc_record->data, bytes); // GetMiscRecord already byte-swapped the data[] field if it contains // UTF-16, so pass false as the swap argument. scoped_ptr new_file(UTF16ToUTF8(string_utf16, false)); file = *new_file; } } } } // Relatively common case BPLOG_IF(INFO, file.empty()) << "MinidumpModule could not determine " "debug_file for " << *name_; return file; } string MinidumpModule::debug_identifier() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for debug_identifier"; return ""; } if (!has_debug_info_) return ""; string identifier; // Use the CodeView record if present. if (cv_record_) { if (cv_record_signature_ == MD_CVINFOPDB70_SIGNATURE) { // It's actually an MDCVInfoPDB70 structure. const MDCVInfoPDB70* cv_record_70 = reinterpret_cast(&(*cv_record_)[0]); assert(cv_record_70->cv_signature == MD_CVINFOPDB70_SIGNATURE); // Use the same format that the MS symbol server uses in filesystem // hierarchies. char identifier_string[41]; snprintf(identifier_string, sizeof(identifier_string), "%08X%04X%04X%02X%02X%02X%02X%02X%02X%02X%02X%x", cv_record_70->signature.data1, cv_record_70->signature.data2, cv_record_70->signature.data3, cv_record_70->signature.data4[0], cv_record_70->signature.data4[1], cv_record_70->signature.data4[2], cv_record_70->signature.data4[3], cv_record_70->signature.data4[4], cv_record_70->signature.data4[5], cv_record_70->signature.data4[6], cv_record_70->signature.data4[7], cv_record_70->age); identifier = identifier_string; } else if (cv_record_signature_ == MD_CVINFOPDB20_SIGNATURE) { // It's actually an MDCVInfoPDB20 structure. const MDCVInfoPDB20* cv_record_20 = reinterpret_cast(&(*cv_record_)[0]); assert(cv_record_20->cv_header.signature == MD_CVINFOPDB20_SIGNATURE); // Use the same format that the MS symbol server uses in filesystem // hierarchies. char identifier_string[17]; snprintf(identifier_string, sizeof(identifier_string), "%08X%x", cv_record_20->signature, cv_record_20->age); identifier = identifier_string; } } // TODO(mmentovai): if there's no usable CodeView record, there might be a // miscellaneous debug record. It only carries a filename, though, and no // identifier. I'm not sure what the right thing to do for the identifier // is in that case, but I don't expect to find many modules without a // CodeView record (or some other Breakpad extension structure in place of // a CodeView record). Treat it as an error (empty identifier) for now. // TODO(mmentovai): on the Mac, provide fallbacks as in code_identifier(). // Relatively common case BPLOG_IF(INFO, identifier.empty()) << "MinidumpModule could not determine " "debug_identifier for " << *name_; return identifier; } string MinidumpModule::version() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for version"; return ""; } string version; if (module_.version_info.signature == MD_VSFIXEDFILEINFO_SIGNATURE && module_.version_info.struct_version & MD_VSFIXEDFILEINFO_VERSION) { char version_string[24]; snprintf(version_string, sizeof(version_string), "%u.%u.%u.%u", module_.version_info.file_version_hi >> 16, module_.version_info.file_version_hi & 0xffff, module_.version_info.file_version_lo >> 16, module_.version_info.file_version_lo & 0xffff); version = version_string; } // TODO(mmentovai): possibly support other struct types in place of // the one used with MD_VSFIXEDFILEINFO_SIGNATURE. We can possibly use // a different structure that better represents versioning facilities on // Mac OS X and Linux, instead of forcing them to adhere to the dotted // quad of 16-bit ints that Windows uses. BPLOG_IF(INFO, version.empty()) << "MinidumpModule could not determine " "version for " << *name_; return version; } const CodeModule* MinidumpModule::Copy() const { return new BasicCodeModule(this); } const u_int8_t* MinidumpModule::GetCVRecord(u_int32_t* size) { if (!module_valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for GetCVRecord"; return NULL; } if (!cv_record_) { // This just guards against 0-sized CodeView records; more specific checks // are used when the signature is checked against various structure types. if (module_.cv_record.data_size == 0) { return NULL; } if (!minidump_->SeekSet(module_.cv_record.rva)) { BPLOG(ERROR) << "MinidumpModule could not seek to CodeView record"; return NULL; } if (module_.cv_record.data_size > max_cv_bytes_) { BPLOG(ERROR) << "MinidumpModule CodeView record size " << module_.cv_record.data_size << " exceeds maximum " << max_cv_bytes_; return NULL; } // Allocating something that will be accessed as MDCVInfoPDB70 or // MDCVInfoPDB20 but is allocated as u_int8_t[] can cause alignment // problems. x86 and ppc are able to cope, though. This allocation // style is needed because the MDCVInfoPDB70 or MDCVInfoPDB20 are // variable-sized due to their pdb_file_name fields; these structures // are not MDCVInfoPDB70_minsize or MDCVInfoPDB20_minsize and treating // them as such would result in incomplete structures or overruns. scoped_ptr< vector > cv_record( new vector(module_.cv_record.data_size)); if (!minidump_->ReadBytes(&(*cv_record)[0], module_.cv_record.data_size)) { BPLOG(ERROR) << "MinidumpModule could not read CodeView record"; return NULL; } u_int32_t signature = MD_CVINFOUNKNOWN_SIGNATURE; if (module_.cv_record.data_size > sizeof(signature)) { MDCVInfoPDB70* cv_record_signature = reinterpret_cast(&(*cv_record)[0]); signature = cv_record_signature->cv_signature; if (minidump_->swap()) Swap(&signature); } if (signature == MD_CVINFOPDB70_SIGNATURE) { // Now that the structure type is known, recheck the size. if (MDCVInfoPDB70_minsize > module_.cv_record.data_size) { BPLOG(ERROR) << "MinidumpModule CodeView7 record size mismatch, " << MDCVInfoPDB70_minsize << " > " << module_.cv_record.data_size; return NULL; } if (minidump_->swap()) { MDCVInfoPDB70* cv_record_70 = reinterpret_cast(&(*cv_record)[0]); Swap(&cv_record_70->cv_signature); Swap(&cv_record_70->signature); Swap(&cv_record_70->age); // Don't swap cv_record_70.pdb_file_name because it's an array of 8-bit // quantities. (It's a path, is it UTF-8?) } // The last field of either structure is null-terminated 8-bit character // data. Ensure that it's null-terminated. if ((*cv_record)[module_.cv_record.data_size - 1] != '\0') { BPLOG(ERROR) << "MinidumpModule CodeView7 record string is not " "0-terminated"; return NULL; } } else if (signature == MD_CVINFOPDB20_SIGNATURE) { // Now that the structure type is known, recheck the size. if (MDCVInfoPDB20_minsize > module_.cv_record.data_size) { BPLOG(ERROR) << "MinidumpModule CodeView2 record size mismatch, " << MDCVInfoPDB20_minsize << " > " << module_.cv_record.data_size; return NULL; } if (minidump_->swap()) { MDCVInfoPDB20* cv_record_20 = reinterpret_cast(&(*cv_record)[0]); Swap(&cv_record_20->cv_header.signature); Swap(&cv_record_20->cv_header.offset); Swap(&cv_record_20->signature); Swap(&cv_record_20->age); // Don't swap cv_record_20.pdb_file_name because it's an array of 8-bit // quantities. (It's a path, is it UTF-8?) } // The last field of either structure is null-terminated 8-bit character // data. Ensure that it's null-terminated. if ((*cv_record)[module_.cv_record.data_size - 1] != '\0') { BPLOG(ERROR) << "MindumpModule CodeView2 record string is not " "0-terminated"; return NULL; } } // If the signature doesn't match something above, it's not something // that Breakpad can presently handle directly. Because some modules in // the wild contain such CodeView records as MD_CVINFOCV50_SIGNATURE, // don't bail out here - allow the data to be returned to the user, // although byte-swapping can't be done. // Store the vector type because that's how storage was allocated, but // return it casted to u_int8_t*. cv_record_ = cv_record.release(); cv_record_signature_ = signature; } if (size) *size = module_.cv_record.data_size; return &(*cv_record_)[0]; } const MDImageDebugMisc* MinidumpModule::GetMiscRecord(u_int32_t* size) { if (!module_valid_) { BPLOG(ERROR) << "Invalid MinidumpModule for GetMiscRecord"; return NULL; } if (!misc_record_) { if (module_.misc_record.data_size == 0) { return NULL; } if (MDImageDebugMisc_minsize > module_.misc_record.data_size) { BPLOG(ERROR) << "MinidumpModule miscellaneous debugging record " "size mismatch, " << MDImageDebugMisc_minsize << " > " << module_.misc_record.data_size; return NULL; } if (!minidump_->SeekSet(module_.misc_record.rva)) { BPLOG(ERROR) << "MinidumpModule could not seek to miscellaneous " "debugging record"; return NULL; } if (module_.misc_record.data_size > max_misc_bytes_) { BPLOG(ERROR) << "MinidumpModule miscellaneous debugging record size " << module_.misc_record.data_size << " exceeds maximum " << max_misc_bytes_; return NULL; } // Allocating something that will be accessed as MDImageDebugMisc but // is allocated as u_int8_t[] can cause alignment problems. x86 and // ppc are able to cope, though. This allocation style is needed // because the MDImageDebugMisc is variable-sized due to its data field; // this structure is not MDImageDebugMisc_minsize and treating it as such // would result in an incomplete structure or an overrun. scoped_ptr< vector > misc_record_mem( new vector(module_.misc_record.data_size)); MDImageDebugMisc* misc_record = reinterpret_cast(&(*misc_record_mem)[0]); if (!minidump_->ReadBytes(misc_record, module_.misc_record.data_size)) { BPLOG(ERROR) << "MinidumpModule could not read miscellaneous debugging " "record"; return NULL; } if (minidump_->swap()) { Swap(&misc_record->data_type); Swap(&misc_record->length); // Don't swap misc_record.unicode because it's an 8-bit quantity. // Don't swap the reserved fields for the same reason, and because // they don't contain any valid data. if (misc_record->unicode) { // There is a potential alignment problem, but shouldn't be a problem // in practice due to the layout of MDImageDebugMisc. u_int16_t* data16 = reinterpret_cast(&(misc_record->data)); unsigned int dataBytes = module_.misc_record.data_size - MDImageDebugMisc_minsize; unsigned int dataLength = dataBytes / 2; for (unsigned int characterIndex = 0; characterIndex < dataLength; ++characterIndex) { Swap(&data16[characterIndex]); } } } if (module_.misc_record.data_size != misc_record->length) { BPLOG(ERROR) << "MinidumpModule miscellaneous debugging record data " "size mismatch, " << module_.misc_record.data_size << " != " << misc_record->length; return NULL; } // Store the vector type because that's how storage was allocated, but // return it casted to MDImageDebugMisc*. misc_record_ = misc_record_mem.release(); } if (size) *size = module_.misc_record.data_size; return reinterpret_cast(&(*misc_record_)[0]); } void MinidumpModule::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpModule cannot print invalid data"; return; } printf("MDRawModule\n"); printf(" base_of_image = 0x%" PRIx64 "\n", module_.base_of_image); printf(" size_of_image = 0x%x\n", module_.size_of_image); printf(" checksum = 0x%x\n", module_.checksum); printf(" time_date_stamp = 0x%x\n", module_.time_date_stamp); printf(" module_name_rva = 0x%x\n", module_.module_name_rva); printf(" version_info.signature = 0x%x\n", module_.version_info.signature); printf(" version_info.struct_version = 0x%x\n", module_.version_info.struct_version); printf(" version_info.file_version = 0x%x:0x%x\n", module_.version_info.file_version_hi, module_.version_info.file_version_lo); printf(" version_info.product_version = 0x%x:0x%x\n", module_.version_info.product_version_hi, module_.version_info.product_version_lo); printf(" version_info.file_flags_mask = 0x%x\n", module_.version_info.file_flags_mask); printf(" version_info.file_flags = 0x%x\n", module_.version_info.file_flags); printf(" version_info.file_os = 0x%x\n", module_.version_info.file_os); printf(" version_info.file_type = 0x%x\n", module_.version_info.file_type); printf(" version_info.file_subtype = 0x%x\n", module_.version_info.file_subtype); printf(" version_info.file_date = 0x%x:0x%x\n", module_.version_info.file_date_hi, module_.version_info.file_date_lo); printf(" cv_record.data_size = %d\n", module_.cv_record.data_size); printf(" cv_record.rva = 0x%x\n", module_.cv_record.rva); printf(" misc_record.data_size = %d\n", module_.misc_record.data_size); printf(" misc_record.rva = 0x%x\n", module_.misc_record.rva); printf(" (code_file) = \"%s\"\n", code_file().c_str()); printf(" (code_identifier) = \"%s\"\n", code_identifier().c_str()); u_int32_t cv_record_size; const u_int8_t *cv_record = GetCVRecord(&cv_record_size); if (cv_record) { if (cv_record_signature_ == MD_CVINFOPDB70_SIGNATURE) { const MDCVInfoPDB70* cv_record_70 = reinterpret_cast(cv_record); assert(cv_record_70->cv_signature == MD_CVINFOPDB70_SIGNATURE); printf(" (cv_record).cv_signature = 0x%x\n", cv_record_70->cv_signature); printf(" (cv_record).signature = %08x-%04x-%04x-%02x%02x-", cv_record_70->signature.data1, cv_record_70->signature.data2, cv_record_70->signature.data3, cv_record_70->signature.data4[0], cv_record_70->signature.data4[1]); for (unsigned int guidIndex = 2; guidIndex < 8; ++guidIndex) { printf("%02x", cv_record_70->signature.data4[guidIndex]); } printf("\n"); printf(" (cv_record).age = %d\n", cv_record_70->age); printf(" (cv_record).pdb_file_name = \"%s\"\n", cv_record_70->pdb_file_name); } else if (cv_record_signature_ == MD_CVINFOPDB20_SIGNATURE) { const MDCVInfoPDB20* cv_record_20 = reinterpret_cast(cv_record); assert(cv_record_20->cv_header.signature == MD_CVINFOPDB20_SIGNATURE); printf(" (cv_record).cv_header.signature = 0x%x\n", cv_record_20->cv_header.signature); printf(" (cv_record).cv_header.offset = 0x%x\n", cv_record_20->cv_header.offset); printf(" (cv_record).signature = 0x%x\n", cv_record_20->signature); printf(" (cv_record).age = %d\n", cv_record_20->age); printf(" (cv_record).pdb_file_name = \"%s\"\n", cv_record_20->pdb_file_name); } else { printf(" (cv_record) = "); for (unsigned int cv_byte_index = 0; cv_byte_index < cv_record_size; ++cv_byte_index) { printf("%02x", cv_record[cv_byte_index]); } printf("\n"); } } else { printf(" (cv_record) = (null)\n"); } const MDImageDebugMisc* misc_record = GetMiscRecord(NULL); if (misc_record) { printf(" (misc_record).data_type = 0x%x\n", misc_record->data_type); printf(" (misc_record).length = 0x%x\n", misc_record->length); printf(" (misc_record).unicode = %d\n", misc_record->unicode); // Don't bother printing the UTF-16, we don't really even expect to ever // see this misc_record anyway. if (misc_record->unicode) printf(" (misc_record).data = \"%s\"\n", misc_record->data); else printf(" (misc_record).data = (UTF-16)\n"); } else { printf(" (misc_record) = (null)\n"); } printf(" (debug_file) = \"%s\"\n", debug_file().c_str()); printf(" (debug_identifier) = \"%s\"\n", debug_identifier().c_str()); printf(" (version) = \"%s\"\n", version().c_str()); printf("\n"); } // // MinidumpModuleList // u_int32_t MinidumpModuleList::max_modules_ = 1024; MinidumpModuleList::MinidumpModuleList(Minidump* minidump) : MinidumpStream(minidump), range_map_(new RangeMap()), modules_(NULL), module_count_(0) { } MinidumpModuleList::~MinidumpModuleList() { delete range_map_; delete modules_; } bool MinidumpModuleList::Read(u_int32_t expected_size) { // Invalidate cached data. range_map_->Clear(); delete modules_; modules_ = NULL; module_count_ = 0; valid_ = false; u_int32_t module_count; if (expected_size < sizeof(module_count)) { BPLOG(ERROR) << "MinidumpModuleList count size mismatch, " << expected_size << " < " << sizeof(module_count); return false; } if (!minidump_->ReadBytes(&module_count, sizeof(module_count))) { BPLOG(ERROR) << "MinidumpModuleList could not read module count"; return false; } if (minidump_->swap()) Swap(&module_count); if (module_count > numeric_limits::max() / MD_MODULE_SIZE) { BPLOG(ERROR) << "MinidumpModuleList module count " << module_count << " would cause multiplication overflow"; return false; } if (expected_size != sizeof(module_count) + module_count * MD_MODULE_SIZE) { // may be padded with 4 bytes on 64bit ABIs for alignment if (expected_size == sizeof(module_count) + 4 + module_count * MD_MODULE_SIZE) { u_int32_t useless; if (!minidump_->ReadBytes(&useless, 4)) { BPLOG(ERROR) << "MinidumpModuleList cannot read modulelist padded bytes"; return false; } } else { BPLOG(ERROR) << "MinidumpModuleList size mismatch, " << expected_size << " != " << sizeof(module_count) + module_count * MD_MODULE_SIZE; return false; } } if (module_count > max_modules_) { BPLOG(ERROR) << "MinidumpModuleList count " << module_count_ << " exceeds maximum " << max_modules_; return false; } if (module_count != 0) { scoped_ptr modules( new MinidumpModules(module_count, MinidumpModule(minidump_))); for (unsigned int module_index = 0; module_index < module_count; ++module_index) { MinidumpModule* module = &(*modules)[module_index]; // Assume that the file offset is correct after the last read. if (!module->Read()) { BPLOG(ERROR) << "MinidumpModuleList could not read module " << module_index << "/" << module_count; return false; } } // Loop through the module list once more to read additional data and // build the range map. This is done in a second pass because // MinidumpModule::ReadAuxiliaryData seeks around, and if it were // included in the loop above, additional seeks would be needed where // none are now to read contiguous data. for (unsigned int module_index = 0; module_index < module_count; ++module_index) { MinidumpModule* module = &(*modules)[module_index]; // ReadAuxiliaryData fails if any data that the module indicates should // exist is missing, but we treat some such cases as valid anyway. See // issue #222: if a debugging record is of a format that's too large to // handle, it shouldn't render the entire dump invalid. Check module // validity before giving up. if (!module->ReadAuxiliaryData() && !module->valid()) { BPLOG(ERROR) << "MinidumpModuleList could not read required module " "auxiliary data for module " << module_index << "/" << module_count; return false; } // It is safe to use module->code_file() after successfully calling // module->ReadAuxiliaryData or noting that the module is valid. u_int64_t base_address = module->base_address(); u_int64_t module_size = module->size(); if (base_address == static_cast(-1)) { BPLOG(ERROR) << "MinidumpModuleList found bad base address " "for module " << module_index << "/" << module_count << ", " << module->code_file(); return false; } if (!range_map_->StoreRange(base_address, module_size, module_index)) { BPLOG(ERROR) << "MinidumpModuleList could not store module " << module_index << "/" << module_count << ", " << module->code_file() << ", " << HexString(base_address) << "+" << HexString(module_size); return false; } } modules_ = modules.release(); } module_count_ = module_count; valid_ = true; return true; } const MinidumpModule* MinidumpModuleList::GetModuleForAddress( u_int64_t address) const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModuleList for GetModuleForAddress"; return NULL; } unsigned int module_index; if (!range_map_->RetrieveRange(address, &module_index, NULL, NULL)) { BPLOG(INFO) << "MinidumpModuleList has no module at " << HexString(address); return NULL; } return GetModuleAtIndex(module_index); } const MinidumpModule* MinidumpModuleList::GetMainModule() const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModuleList for GetMainModule"; return NULL; } // The main code module is the first one present in a minidump file's // MDRawModuleList. return GetModuleAtSequence(0); } const MinidumpModule* MinidumpModuleList::GetModuleAtSequence( unsigned int sequence) const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModuleList for GetModuleAtSequence"; return NULL; } if (sequence >= module_count_) { BPLOG(ERROR) << "MinidumpModuleList sequence out of range: " << sequence << "/" << module_count_; return NULL; } unsigned int module_index; if (!range_map_->RetrieveRangeAtIndex(sequence, &module_index, NULL, NULL)) { BPLOG(ERROR) << "MinidumpModuleList has no module at sequence " << sequence; return NULL; } return GetModuleAtIndex(module_index); } const MinidumpModule* MinidumpModuleList::GetModuleAtIndex( unsigned int index) const { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpModuleList for GetModuleAtIndex"; return NULL; } if (index >= module_count_) { BPLOG(ERROR) << "MinidumpModuleList index out of range: " << index << "/" << module_count_; return NULL; } return &(*modules_)[index]; } const CodeModules* MinidumpModuleList::Copy() const { return new BasicCodeModules(this); } void MinidumpModuleList::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpModuleList cannot print invalid data"; return; } printf("MinidumpModuleList\n"); printf(" module_count = %d\n", module_count_); printf("\n"); for (unsigned int module_index = 0; module_index < module_count_; ++module_index) { printf("module[%d]\n", module_index); (*modules_)[module_index].Print(); } } // // MinidumpMemoryList // u_int32_t MinidumpMemoryList::max_regions_ = 4096; MinidumpMemoryList::MinidumpMemoryList(Minidump* minidump) : MinidumpStream(minidump), range_map_(new RangeMap()), descriptors_(NULL), regions_(NULL), region_count_(0) { } MinidumpMemoryList::~MinidumpMemoryList() { delete range_map_; delete descriptors_; delete regions_; } bool MinidumpMemoryList::Read(u_int32_t expected_size) { // Invalidate cached data. delete descriptors_; descriptors_ = NULL; delete regions_; regions_ = NULL; range_map_->Clear(); region_count_ = 0; valid_ = false; u_int32_t region_count; if (expected_size < sizeof(region_count)) { BPLOG(ERROR) << "MinidumpMemoryList count size mismatch, " << expected_size << " < " << sizeof(region_count); return false; } if (!minidump_->ReadBytes(®ion_count, sizeof(region_count))) { BPLOG(ERROR) << "MinidumpMemoryList could not read memory region count"; return false; } if (minidump_->swap()) Swap(®ion_count); if (region_count > numeric_limits::max() / sizeof(MDMemoryDescriptor)) { BPLOG(ERROR) << "MinidumpMemoryList region count " << region_count << " would cause multiplication overflow"; return false; } if (expected_size != sizeof(region_count) + region_count * sizeof(MDMemoryDescriptor)) { // may be padded with 4 bytes on 64bit ABIs for alignment if (expected_size == sizeof(region_count) + 4 + region_count * sizeof(MDMemoryDescriptor)) { u_int32_t useless; if (!minidump_->ReadBytes(&useless, 4)) { BPLOG(ERROR) << "MinidumpMemoryList cannot read memorylist padded bytes"; return false; } } else { BPLOG(ERROR) << "MinidumpMemoryList size mismatch, " << expected_size << " != " << sizeof(region_count) + region_count * sizeof(MDMemoryDescriptor); return false; } } if (region_count > max_regions_) { BPLOG(ERROR) << "MinidumpMemoryList count " << region_count << " exceeds maximum " << max_regions_; return false; } if (region_count != 0) { scoped_ptr descriptors( new MemoryDescriptors(region_count)); // Read the entire array in one fell swoop, instead of reading one entry // at a time in the loop. if (!minidump_->ReadBytes(&(*descriptors)[0], sizeof(MDMemoryDescriptor) * region_count)) { BPLOG(ERROR) << "MinidumpMemoryList could not read memory region list"; return false; } scoped_ptr regions( new MemoryRegions(region_count, MinidumpMemoryRegion(minidump_))); for (unsigned int region_index = 0; region_index < region_count; ++region_index) { MDMemoryDescriptor* descriptor = &(*descriptors)[region_index]; if (minidump_->swap()) Swap(descriptor); u_int64_t base_address = descriptor->start_of_memory_range; u_int32_t region_size = descriptor->memory.data_size; // Check for base + size overflow or undersize. if (region_size == 0 || region_size > numeric_limits::max() - base_address) { BPLOG(ERROR) << "MinidumpMemoryList has a memory region problem, " << " region " << region_index << "/" << region_count << ", " << HexString(base_address) << "+" << HexString(region_size); return false; } if (!range_map_->StoreRange(base_address, region_size, region_index)) { BPLOG(ERROR) << "MinidumpMemoryList could not store memory region " << region_index << "/" << region_count << ", " << HexString(base_address) << "+" << HexString(region_size); return false; } (*regions)[region_index].SetDescriptor(descriptor); } descriptors_ = descriptors.release(); regions_ = regions.release(); } region_count_ = region_count; valid_ = true; return true; } MinidumpMemoryRegion* MinidumpMemoryList::GetMemoryRegionAtIndex( unsigned int index) { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpMemoryList for GetMemoryRegionAtIndex"; return NULL; } if (index >= region_count_) { BPLOG(ERROR) << "MinidumpMemoryList index out of range: " << index << "/" << region_count_; return NULL; } return &(*regions_)[index]; } MinidumpMemoryRegion* MinidumpMemoryList::GetMemoryRegionForAddress( u_int64_t address) { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpMemoryList for GetMemoryRegionForAddress"; return NULL; } unsigned int region_index; if (!range_map_->RetrieveRange(address, ®ion_index, NULL, NULL)) { BPLOG(INFO) << "MinidumpMemoryList has no memory region at " << HexString(address); return NULL; } return GetMemoryRegionAtIndex(region_index); } void MinidumpMemoryList::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpMemoryList cannot print invalid data"; return; } printf("MinidumpMemoryList\n"); printf(" region_count = %d\n", region_count_); printf("\n"); for (unsigned int region_index = 0; region_index < region_count_; ++region_index) { MDMemoryDescriptor* descriptor = &(*descriptors_)[region_index]; printf("region[%d]\n", region_index); printf("MDMemoryDescriptor\n"); printf(" start_of_memory_range = 0x%" PRIx64 "\n", descriptor->start_of_memory_range); printf(" memory.data_size = 0x%x\n", descriptor->memory.data_size); printf(" memory.rva = 0x%x\n", descriptor->memory.rva); MinidumpMemoryRegion* region = GetMemoryRegionAtIndex(region_index); if (region) { printf("Memory\n"); region->Print(); } else { printf("No memory\n"); } printf("\n"); } } // // MinidumpException // MinidumpException::MinidumpException(Minidump* minidump) : MinidumpStream(minidump), exception_(), context_(NULL) { } MinidumpException::~MinidumpException() { delete context_; } bool MinidumpException::Read(u_int32_t expected_size) { // Invalidate cached data. delete context_; context_ = NULL; valid_ = false; if (expected_size != sizeof(exception_)) { BPLOG(ERROR) << "MinidumpException size mismatch, " << expected_size << " != " << sizeof(exception_); return false; } if (!minidump_->ReadBytes(&exception_, sizeof(exception_))) { BPLOG(ERROR) << "MinidumpException cannot read exception"; return false; } if (minidump_->swap()) { Swap(&exception_.thread_id); // exception_.__align is for alignment only and does not need to be // swapped. Swap(&exception_.exception_record.exception_code); Swap(&exception_.exception_record.exception_flags); Swap(&exception_.exception_record.exception_record); Swap(&exception_.exception_record.exception_address); Swap(&exception_.exception_record.number_parameters); // exception_.exception_record.__align is for alignment only and does not // need to be swapped. for (unsigned int parameter_index = 0; parameter_index < MD_EXCEPTION_MAXIMUM_PARAMETERS; ++parameter_index) { Swap(&exception_.exception_record.exception_information[parameter_index]); } Swap(&exception_.thread_context); } valid_ = true; return true; } bool MinidumpException::GetThreadID(u_int32_t *thread_id) const { BPLOG_IF(ERROR, !thread_id) << "MinidumpException::GetThreadID requires " "|thread_id|"; assert(thread_id); *thread_id = 0; if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpException for GetThreadID"; return false; } *thread_id = exception_.thread_id; return true; } MinidumpContext* MinidumpException::GetContext() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpException for GetContext"; return NULL; } if (!context_) { if (!minidump_->SeekSet(exception_.thread_context.rva)) { BPLOG(ERROR) << "MinidumpException cannot seek to context"; return NULL; } scoped_ptr context(new MinidumpContext(minidump_)); // Don't log as an error if we can still fall back on the thread's context // (which must be possible if we got this far.) if (!context->Read(exception_.thread_context.data_size)) { BPLOG(INFO) << "MinidumpException cannot read context"; return NULL; } context_ = context.release(); } return context_; } void MinidumpException::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpException cannot print invalid data"; return; } printf("MDException\n"); printf(" thread_id = 0x%x\n", exception_.thread_id); printf(" exception_record.exception_code = 0x%x\n", exception_.exception_record.exception_code); printf(" exception_record.exception_flags = 0x%x\n", exception_.exception_record.exception_flags); printf(" exception_record.exception_record = 0x%" PRIx64 "\n", exception_.exception_record.exception_record); printf(" exception_record.exception_address = 0x%" PRIx64 "\n", exception_.exception_record.exception_address); printf(" exception_record.number_parameters = %d\n", exception_.exception_record.number_parameters); for (unsigned int parameterIndex = 0; parameterIndex < exception_.exception_record.number_parameters; ++parameterIndex) { printf(" exception_record.exception_information[%2d] = 0x%" PRIx64 "\n", parameterIndex, exception_.exception_record.exception_information[parameterIndex]); } printf(" thread_context.data_size = %d\n", exception_.thread_context.data_size); printf(" thread_context.rva = 0x%x\n", exception_.thread_context.rva); MinidumpContext* context = GetContext(); if (context) { printf("\n"); context->Print(); } else { printf(" (no context)\n"); printf("\n"); } } // // MinidumpAssertion // MinidumpAssertion::MinidumpAssertion(Minidump* minidump) : MinidumpStream(minidump), assertion_(), expression_(), function_(), file_() { } MinidumpAssertion::~MinidumpAssertion() { } bool MinidumpAssertion::Read(u_int32_t expected_size) { // Invalidate cached data. valid_ = false; if (expected_size != sizeof(assertion_)) { BPLOG(ERROR) << "MinidumpAssertion size mismatch, " << expected_size << " != " << sizeof(assertion_); return false; } if (!minidump_->ReadBytes(&assertion_, sizeof(assertion_))) { BPLOG(ERROR) << "MinidumpAssertion cannot read assertion"; return false; } // Each of {expression, function, file} is a UTF-16 string, // we'll convert them to UTF-8 for ease of use. // expression // Since we don't have an explicit byte length for each string, // we use UTF16codeunits to calculate word length, then derive byte // length from that. u_int32_t word_length = UTF16codeunits(assertion_.expression, sizeof(assertion_.expression)); if (word_length > 0) { u_int32_t byte_length = word_length * 2; vector expression_utf16(word_length); memcpy(&expression_utf16[0], &assertion_.expression[0], byte_length); scoped_ptr new_expression(UTF16ToUTF8(expression_utf16, minidump_->swap())); expression_ = *new_expression; } // assertion word_length = UTF16codeunits(assertion_.function, sizeof(assertion_.function)); if (word_length) { u_int32_t byte_length = word_length * 2; vector function_utf16(word_length); memcpy(&function_utf16[0], &assertion_.function[0], byte_length); scoped_ptr new_function(UTF16ToUTF8(function_utf16, minidump_->swap())); function_ = *new_function; } // file word_length = UTF16codeunits(assertion_.file, sizeof(assertion_.file)); if (word_length > 0) { u_int32_t byte_length = word_length * 2; vector file_utf16(word_length); memcpy(&file_utf16[0], &assertion_.file[0], byte_length); scoped_ptr new_file(UTF16ToUTF8(file_utf16, minidump_->swap())); file_ = *new_file; } if (minidump_->swap()) { Swap(&assertion_.line); Swap(&assertion_.type); } valid_ = true; return true; } void MinidumpAssertion::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpAssertion cannot print invalid data"; return; } printf("MDAssertion\n"); printf(" expression = %s\n", expression_.c_str()); printf(" function = %s\n", function_.c_str()); printf(" file = %s\n", file_.c_str()); printf(" line = %u\n", assertion_.line); printf(" type = %u\n", assertion_.type); printf("\n"); } // // MinidumpSystemInfo // MinidumpSystemInfo::MinidumpSystemInfo(Minidump* minidump) : MinidumpStream(minidump), system_info_(), csd_version_(NULL), cpu_vendor_(NULL) { } MinidumpSystemInfo::~MinidumpSystemInfo() { delete csd_version_; delete cpu_vendor_; } bool MinidumpSystemInfo::Read(u_int32_t expected_size) { // Invalidate cached data. delete csd_version_; csd_version_ = NULL; delete cpu_vendor_; cpu_vendor_ = NULL; valid_ = false; if (expected_size != sizeof(system_info_)) { BPLOG(ERROR) << "MinidumpSystemInfo size mismatch, " << expected_size << " != " << sizeof(system_info_); return false; } if (!minidump_->ReadBytes(&system_info_, sizeof(system_info_))) { BPLOG(ERROR) << "MinidumpSystemInfo cannot read system info"; return false; } if (minidump_->swap()) { Swap(&system_info_.processor_architecture); Swap(&system_info_.processor_level); Swap(&system_info_.processor_revision); // number_of_processors and product_type are 8-bit quantities and need no // swapping. Swap(&system_info_.major_version); Swap(&system_info_.minor_version); Swap(&system_info_.build_number); Swap(&system_info_.platform_id); Swap(&system_info_.csd_version_rva); Swap(&system_info_.suite_mask); // Don't swap the reserved2 field because its contents are unknown. if (system_info_.processor_architecture == MD_CPU_ARCHITECTURE_X86 || system_info_.processor_architecture == MD_CPU_ARCHITECTURE_X86_WIN64) { for (unsigned int i = 0; i < 3; ++i) Swap(&system_info_.cpu.x86_cpu_info.vendor_id[i]); Swap(&system_info_.cpu.x86_cpu_info.version_information); Swap(&system_info_.cpu.x86_cpu_info.feature_information); Swap(&system_info_.cpu.x86_cpu_info.amd_extended_cpu_features); } else { for (unsigned int i = 0; i < 2; ++i) Swap(&system_info_.cpu.other_cpu_info.processor_features[i]); } } valid_ = true; return true; } string MinidumpSystemInfo::GetOS() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpSystemInfo for GetOS"; return NULL; } string os; switch (system_info_.platform_id) { case MD_OS_WIN32_NT: case MD_OS_WIN32_WINDOWS: os = "windows"; break; case MD_OS_MAC_OS_X: os = "mac"; break; case MD_OS_LINUX: os = "linux"; break; case MD_OS_SOLARIS: os = "solaris"; break; default: BPLOG(ERROR) << "MinidumpSystemInfo unknown OS for platform " << HexString(system_info_.platform_id); break; } return os; } string MinidumpSystemInfo::GetCPU() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpSystemInfo for GetCPU"; return ""; } string cpu; switch (system_info_.processor_architecture) { case MD_CPU_ARCHITECTURE_X86: case MD_CPU_ARCHITECTURE_X86_WIN64: cpu = "x86"; break; case MD_CPU_ARCHITECTURE_AMD64: cpu = "x86-64"; break; case MD_CPU_ARCHITECTURE_PPC: cpu = "ppc"; break; case MD_CPU_ARCHITECTURE_SPARC: cpu = "sparc"; break; case MD_CPU_ARCHITECTURE_ARM: cpu = "arm"; break; default: BPLOG(ERROR) << "MinidumpSystemInfo unknown CPU for architecture " << HexString(system_info_.processor_architecture); break; } return cpu; } const string* MinidumpSystemInfo::GetCSDVersion() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpSystemInfo for GetCSDVersion"; return NULL; } if (!csd_version_) csd_version_ = minidump_->ReadString(system_info_.csd_version_rva); BPLOG_IF(ERROR, !csd_version_) << "MinidumpSystemInfo could not read " "CSD version"; return csd_version_; } const string* MinidumpSystemInfo::GetCPUVendor() { if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpSystemInfo for GetCPUVendor"; return NULL; } // CPU vendor information can only be determined from x86 minidumps. if (!cpu_vendor_ && (system_info_.processor_architecture == MD_CPU_ARCHITECTURE_X86 || system_info_.processor_architecture == MD_CPU_ARCHITECTURE_X86_WIN64)) { char cpu_vendor_string[13]; snprintf(cpu_vendor_string, sizeof(cpu_vendor_string), "%c%c%c%c%c%c%c%c%c%c%c%c", system_info_.cpu.x86_cpu_info.vendor_id[0] & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[0] >> 8) & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[0] >> 16) & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[0] >> 24) & 0xff, system_info_.cpu.x86_cpu_info.vendor_id[1] & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[1] >> 8) & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[1] >> 16) & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[1] >> 24) & 0xff, system_info_.cpu.x86_cpu_info.vendor_id[2] & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[2] >> 8) & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[2] >> 16) & 0xff, (system_info_.cpu.x86_cpu_info.vendor_id[2] >> 24) & 0xff); cpu_vendor_ = new string(cpu_vendor_string); } return cpu_vendor_; } void MinidumpSystemInfo::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpSystemInfo cannot print invalid data"; return; } printf("MDRawSystemInfo\n"); printf(" processor_architecture = %d\n", system_info_.processor_architecture); printf(" processor_level = %d\n", system_info_.processor_level); printf(" processor_revision = 0x%x\n", system_info_.processor_revision); printf(" number_of_processors = %d\n", system_info_.number_of_processors); printf(" product_type = %d\n", system_info_.product_type); printf(" major_version = %d\n", system_info_.major_version); printf(" minor_version = %d\n", system_info_.minor_version); printf(" build_number = %d\n", system_info_.build_number); printf(" platform_id = %d\n", system_info_.platform_id); printf(" csd_version_rva = 0x%x\n", system_info_.csd_version_rva); printf(" suite_mask = 0x%x\n", system_info_.suite_mask); for (unsigned int i = 0; i < 3; ++i) { printf(" cpu.x86_cpu_info.vendor_id[%d] = 0x%x\n", i, system_info_.cpu.x86_cpu_info.vendor_id[i]); } printf(" cpu.x86_cpu_info.version_information = 0x%x\n", system_info_.cpu.x86_cpu_info.version_information); printf(" cpu.x86_cpu_info.feature_information = 0x%x\n", system_info_.cpu.x86_cpu_info.feature_information); printf(" cpu.x86_cpu_info.amd_extended_cpu_features = 0x%x\n", system_info_.cpu.x86_cpu_info.amd_extended_cpu_features); const string* csd_version = GetCSDVersion(); if (csd_version) { printf(" (csd_version) = \"%s\"\n", csd_version->c_str()); } else { printf(" (csd_version) = (null)\n"); } const string* cpu_vendor = GetCPUVendor(); if (cpu_vendor) { printf(" (cpu_vendor) = \"%s\"\n", cpu_vendor->c_str()); } else { printf(" (cpu_vendor) = (null)\n"); } printf("\n"); } // // MinidumpMiscInfo // MinidumpMiscInfo::MinidumpMiscInfo(Minidump* minidump) : MinidumpStream(minidump), misc_info_() { } bool MinidumpMiscInfo::Read(u_int32_t expected_size) { valid_ = false; if (expected_size != MD_MISCINFO_SIZE && expected_size != MD_MISCINFO2_SIZE) { BPLOG(ERROR) << "MinidumpMiscInfo size mismatch, " << expected_size << " != " << MD_MISCINFO_SIZE << ", " << MD_MISCINFO2_SIZE << ")"; return false; } if (!minidump_->ReadBytes(&misc_info_, expected_size)) { BPLOG(ERROR) << "MinidumpMiscInfo cannot read miscellaneous info"; return false; } if (minidump_->swap()) { Swap(&misc_info_.size_of_info); Swap(&misc_info_.flags1); Swap(&misc_info_.process_id); Swap(&misc_info_.process_create_time); Swap(&misc_info_.process_user_time); Swap(&misc_info_.process_kernel_time); if (misc_info_.size_of_info > MD_MISCINFO_SIZE) { Swap(&misc_info_.processor_max_mhz); Swap(&misc_info_.processor_current_mhz); Swap(&misc_info_.processor_mhz_limit); Swap(&misc_info_.processor_max_idle_state); Swap(&misc_info_.processor_current_idle_state); } } if (expected_size != misc_info_.size_of_info) { BPLOG(ERROR) << "MinidumpMiscInfo size mismatch, " << expected_size << " != " << misc_info_.size_of_info; return false; } valid_ = true; return true; } void MinidumpMiscInfo::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpMiscInfo cannot print invalid data"; return; } printf("MDRawMiscInfo\n"); printf(" size_of_info = %d\n", misc_info_.size_of_info); printf(" flags1 = 0x%x\n", misc_info_.flags1); printf(" process_id = 0x%x\n", misc_info_.process_id); printf(" process_create_time = 0x%x\n", misc_info_.process_create_time); printf(" process_user_time = 0x%x\n", misc_info_.process_user_time); printf(" process_kernel_time = 0x%x\n", misc_info_.process_kernel_time); if (misc_info_.size_of_info > MD_MISCINFO_SIZE) { printf(" processor_max_mhz = %d\n", misc_info_.processor_max_mhz); printf(" processor_current_mhz = %d\n", misc_info_.processor_current_mhz); printf(" processor_mhz_limit = %d\n", misc_info_.processor_mhz_limit); printf(" processor_max_idle_state = 0x%x\n", misc_info_.processor_max_idle_state); printf(" processor_current_idle_state = 0x%x\n", misc_info_.processor_current_idle_state); } printf("\n"); } // // MinidumpBreakpadInfo // MinidumpBreakpadInfo::MinidumpBreakpadInfo(Minidump* minidump) : MinidumpStream(minidump), breakpad_info_() { } bool MinidumpBreakpadInfo::Read(u_int32_t expected_size) { valid_ = false; if (expected_size != sizeof(breakpad_info_)) { BPLOG(ERROR) << "MinidumpBreakpadInfo size mismatch, " << expected_size << " != " << sizeof(breakpad_info_); return false; } if (!minidump_->ReadBytes(&breakpad_info_, sizeof(breakpad_info_))) { BPLOG(ERROR) << "MinidumpBreakpadInfo cannot read Breakpad info"; return false; } if (minidump_->swap()) { Swap(&breakpad_info_.validity); Swap(&breakpad_info_.dump_thread_id); Swap(&breakpad_info_.requesting_thread_id); } valid_ = true; return true; } bool MinidumpBreakpadInfo::GetDumpThreadID(u_int32_t *thread_id) const { BPLOG_IF(ERROR, !thread_id) << "MinidumpBreakpadInfo::GetDumpThreadID " "requires |thread_id|"; assert(thread_id); *thread_id = 0; if (!valid_) { BPLOG(ERROR) << "Invalid MinidumpBreakpadInfo for GetDumpThreadID"; return false; } if (!(breakpad_info_.validity & MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID)) { BPLOG(INFO) << "MinidumpBreakpadInfo has no dump thread"; return false; } *thread_id = breakpad_info_.dump_thread_id; return true; } bool MinidumpBreakpadInfo::GetRequestingThreadID(u_int32_t *thread_id) const { BPLOG_IF(ERROR, !thread_id) << "MinidumpBreakpadInfo::GetRequestingThreadID " "requires |thread_id|"; assert(thread_id); *thread_id = 0; if (!thread_id || !valid_) { BPLOG(ERROR) << "Invalid MinidumpBreakpadInfo for GetRequestingThreadID"; return false; } if (!(breakpad_info_.validity & MD_BREAKPAD_INFO_VALID_REQUESTING_THREAD_ID)) { BPLOG(INFO) << "MinidumpBreakpadInfo has no requesting thread"; return false; } *thread_id = breakpad_info_.requesting_thread_id; return true; } void MinidumpBreakpadInfo::Print() { if (!valid_) { BPLOG(ERROR) << "MinidumpBreakpadInfo cannot print invalid data"; return; } printf("MDRawBreakpadInfo\n"); printf(" validity = 0x%x\n", breakpad_info_.validity); if (breakpad_info_.validity & MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID) { printf(" dump_thread_id = 0x%x\n", breakpad_info_.dump_thread_id); } else { printf(" dump_thread_id = (invalid)\n"); } if (breakpad_info_.validity & MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID) { printf(" requesting_thread_id = 0x%x\n", breakpad_info_.requesting_thread_id); } else { printf(" requesting_thread_id = (invalid)\n"); } printf("\n"); } // // Minidump // u_int32_t Minidump::max_streams_ = 128; unsigned int Minidump::max_string_length_ = 1024; Minidump::Minidump(const string& path) : header_(), directory_(NULL), stream_map_(new MinidumpStreamMap()), path_(path), stream_(NULL), swap_(false), valid_(false) { } Minidump::Minidump(istream& stream) : header_(), directory_(NULL), stream_map_(new MinidumpStreamMap()), path_(), stream_(&stream), swap_(false), valid_(false) { } Minidump::~Minidump() { if (stream_) { BPLOG(INFO) << "Minidump closing minidump"; } if (!path_.empty()) { delete stream_; } delete directory_; delete stream_map_; } bool Minidump::Open() { if (stream_ != NULL) { BPLOG(INFO) << "Minidump reopening minidump " << path_; // The file is already open. Seek to the beginning, which is the position // the file would be at if it were opened anew. return SeekSet(0); } stream_ = new ifstream(path_.c_str(), std::ios::in | std::ios::binary); if (!stream_ || !stream_->good()) { string error_string; int error_code = ErrnoString(&error_string); BPLOG(ERROR) << "Minidump could not open minidump " << path_ << ", error " << error_code << ": " << error_string; return false; } BPLOG(INFO) << "Minidump opened minidump " << path_; return true; } bool Minidump::Read() { // Invalidate cached data. delete directory_; directory_ = NULL; stream_map_->clear(); valid_ = false; if (!Open()) { BPLOG(ERROR) << "Minidump cannot open minidump"; return false; } if (!ReadBytes(&header_, sizeof(MDRawHeader))) { BPLOG(ERROR) << "Minidump cannot read header"; return false; } if (header_.signature != MD_HEADER_SIGNATURE) { // The file may be byte-swapped. Under the present architecture, these // classes don't know or need to know what CPU (or endianness) the // minidump was produced on in order to parse it. Use the signature as // a byte order marker. u_int32_t signature_swapped = header_.signature; Swap(&signature_swapped); if (signature_swapped != MD_HEADER_SIGNATURE) { // This isn't a minidump or a byte-swapped minidump. BPLOG(ERROR) << "Minidump header signature mismatch: (" << HexString(header_.signature) << ", " << HexString(signature_swapped) << ") != " << HexString(MD_HEADER_SIGNATURE); return false; } swap_ = true; } else { // The file is not byte-swapped. Set swap_ false (it may have been true // if the object is being reused?) swap_ = false; } BPLOG(INFO) << "Minidump " << (swap_ ? "" : "not ") << "byte-swapping minidump"; if (swap_) { Swap(&header_.signature); Swap(&header_.version); Swap(&header_.stream_count); Swap(&header_.stream_directory_rva); Swap(&header_.checksum); Swap(&header_.time_date_stamp); Swap(&header_.flags); } // Version check. The high 16 bits of header_.version contain something // else "implementation specific." if ((header_.version & 0x0000ffff) != MD_HEADER_VERSION) { BPLOG(ERROR) << "Minidump version mismatch: " << HexString(header_.version & 0x0000ffff) << " != " << HexString(MD_HEADER_VERSION); return false; } if (!SeekSet(header_.stream_directory_rva)) { BPLOG(ERROR) << "Minidump cannot seek to stream directory"; return false; } if (header_.stream_count > max_streams_) { BPLOG(ERROR) << "Minidump stream count " << header_.stream_count << " exceeds maximum " << max_streams_; return false; } if (header_.stream_count != 0) { scoped_ptr directory( new MinidumpDirectoryEntries(header_.stream_count)); // Read the entire array in one fell swoop, instead of reading one entry // at a time in the loop. if (!ReadBytes(&(*directory)[0], sizeof(MDRawDirectory) * header_.stream_count)) { BPLOG(ERROR) << "Minidump cannot read stream directory"; return false; } for (unsigned int stream_index = 0; stream_index < header_.stream_count; ++stream_index) { MDRawDirectory* directory_entry = &(*directory)[stream_index]; if (swap_) { Swap(&directory_entry->stream_type); Swap(&directory_entry->location); } // Initialize the stream_map_ map, which speeds locating a stream by // type. unsigned int stream_type = directory_entry->stream_type; switch (stream_type) { case MD_THREAD_LIST_STREAM: case MD_MODULE_LIST_STREAM: case MD_MEMORY_LIST_STREAM: case MD_EXCEPTION_STREAM: case MD_SYSTEM_INFO_STREAM: case MD_MISC_INFO_STREAM: case MD_BREAKPAD_INFO_STREAM: { if (stream_map_->find(stream_type) != stream_map_->end()) { // Another stream with this type was already found. A minidump // file should contain at most one of each of these stream types. BPLOG(ERROR) << "Minidump found multiple streams of type " << stream_type << ", but can only deal with one"; return false; } // Fall through to default } default: { // Overwrites for stream types other than those above, but it's // expected to be the user's burden in that case. (*stream_map_)[stream_type].stream_index = stream_index; } } } directory_ = directory.release(); } valid_ = true; return true; } MinidumpThreadList* Minidump::GetThreadList() { MinidumpThreadList* thread_list; return GetStream(&thread_list); } MinidumpModuleList* Minidump::GetModuleList() { MinidumpModuleList* module_list; return GetStream(&module_list); } MinidumpMemoryList* Minidump::GetMemoryList() { MinidumpMemoryList* memory_list; return GetStream(&memory_list); } MinidumpException* Minidump::GetException() { MinidumpException* exception; return GetStream(&exception); } MinidumpAssertion* Minidump::GetAssertion() { MinidumpAssertion* assertion; return GetStream(&assertion); } MinidumpSystemInfo* Minidump::GetSystemInfo() { MinidumpSystemInfo* system_info; return GetStream(&system_info); } MinidumpMiscInfo* Minidump::GetMiscInfo() { MinidumpMiscInfo* misc_info; return GetStream(&misc_info); } MinidumpBreakpadInfo* Minidump::GetBreakpadInfo() { MinidumpBreakpadInfo* breakpad_info; return GetStream(&breakpad_info); } void Minidump::Print() { if (!valid_) { BPLOG(ERROR) << "Minidump cannot print invalid data"; return; } printf("MDRawHeader\n"); printf(" signature = 0x%x\n", header_.signature); printf(" version = 0x%x\n", header_.version); printf(" stream_count = %d\n", header_.stream_count); printf(" stream_directory_rva = 0x%x\n", header_.stream_directory_rva); printf(" checksum = 0x%x\n", header_.checksum); struct tm timestruct; gmtime_r(reinterpret_cast(&header_.time_date_stamp), ×truct); char timestr[20]; strftime(timestr, 20, "%Y-%m-%d %H:%M:%S", ×truct); printf(" time_date_stamp = 0x%x %s\n", header_.time_date_stamp, timestr); printf(" flags = 0x%" PRIx64 "\n", header_.flags); printf("\n"); for (unsigned int stream_index = 0; stream_index < header_.stream_count; ++stream_index) { MDRawDirectory* directory_entry = &(*directory_)[stream_index]; printf("mDirectory[%d]\n", stream_index); printf("MDRawDirectory\n"); printf(" stream_type = %d\n", directory_entry->stream_type); printf(" location.data_size = %d\n", directory_entry->location.data_size); printf(" location.rva = 0x%x\n", directory_entry->location.rva); printf("\n"); } printf("Streams:\n"); for (MinidumpStreamMap::const_iterator iterator = stream_map_->begin(); iterator != stream_map_->end(); ++iterator) { u_int32_t stream_type = iterator->first; MinidumpStreamInfo info = iterator->second; printf(" stream type 0x%x at index %d\n", stream_type, info.stream_index); } printf("\n"); } const MDRawDirectory* Minidump::GetDirectoryEntryAtIndex(unsigned int index) const { if (!valid_) { BPLOG(ERROR) << "Invalid Minidump for GetDirectoryEntryAtIndex"; return NULL; } if (index >= header_.stream_count) { BPLOG(ERROR) << "Minidump stream directory index out of range: " << index << "/" << header_.stream_count; return NULL; } return &(*directory_)[index]; } bool Minidump::ReadBytes(void* bytes, size_t count) { // Can't check valid_ because Read needs to call this method before // validity can be determined. if (!stream_) { return false; } stream_->read(static_cast(bytes), count); size_t bytes_read = stream_->gcount(); if (bytes_read != count) { if (bytes_read == size_t(-1)) { string error_string; int error_code = ErrnoString(&error_string); BPLOG(ERROR) << "ReadBytes: error " << error_code << ": " << error_string; } else { BPLOG(ERROR) << "ReadBytes: read " << bytes_read << "/" << count; } return false; } return true; } bool Minidump::SeekSet(off_t offset) { // Can't check valid_ because Read needs to call this method before // validity can be determined. if (!stream_) { return false; } stream_->seekg(offset, std::ios_base::beg); if (!stream_->good()) { string error_string; int error_code = ErrnoString(&error_string); BPLOG(ERROR) << "SeekSet: error " << error_code << ": " << error_string; return false; } return true; } off_t Minidump::Tell() { if (!valid_ || !stream_) { return (off_t)-1; } return stream_->tellg(); } string* Minidump::ReadString(off_t offset) { if (!valid_) { BPLOG(ERROR) << "Invalid Minidump for ReadString"; return NULL; } if (!SeekSet(offset)) { BPLOG(ERROR) << "ReadString could not seek to string at offset " << offset; return NULL; } u_int32_t bytes; if (!ReadBytes(&bytes, sizeof(bytes))) { BPLOG(ERROR) << "ReadString could not read string size at offset " << offset; return NULL; } if (swap_) Swap(&bytes); if (bytes % 2 != 0) { BPLOG(ERROR) << "ReadString found odd-sized " << bytes << "-byte string at offset " << offset; return NULL; } unsigned int utf16_words = bytes / 2; if (utf16_words > max_string_length_) { BPLOG(ERROR) << "ReadString string length " << utf16_words << " exceeds maximum " << max_string_length_ << " at offset " << offset; return NULL; } vector string_utf16(utf16_words); if (utf16_words) { if (!ReadBytes(&string_utf16[0], bytes)) { BPLOG(ERROR) << "ReadString could not read " << bytes << "-byte string at offset " << offset; return NULL; } } return UTF16ToUTF8(string_utf16, swap_); } bool Minidump::SeekToStreamType(u_int32_t stream_type, u_int32_t* stream_length) { BPLOG_IF(ERROR, !stream_length) << "Minidump::SeekToStreamType requires " "|stream_length|"; assert(stream_length); *stream_length = 0; if (!valid_) { BPLOG(ERROR) << "Invalid Mindump for SeekToStreamType"; return false; } MinidumpStreamMap::const_iterator iterator = stream_map_->find(stream_type); if (iterator == stream_map_->end()) { // This stream type didn't exist in the directory. BPLOG(INFO) << "SeekToStreamType: type " << stream_type << " not present"; return false; } MinidumpStreamInfo info = iterator->second; if (info.stream_index >= header_.stream_count) { BPLOG(ERROR) << "SeekToStreamType: type " << stream_type << " out of range: " << info.stream_index << "/" << header_.stream_count; return false; } MDRawDirectory* directory_entry = &(*directory_)[info.stream_index]; if (!SeekSet(directory_entry->location.rva)) { BPLOG(ERROR) << "SeekToStreamType could not seek to stream type " << stream_type; return false; } *stream_length = directory_entry->location.data_size; return true; } template T* Minidump::GetStream(T** stream) { // stream is a garbage parameter that's present only to account for C++'s // inability to overload a method based solely on its return type. const u_int32_t stream_type = T::kStreamType; BPLOG_IF(ERROR, !stream) << "Minidump::GetStream type " << stream_type << " requires |stream|"; assert(stream); *stream = NULL; if (!valid_) { BPLOG(ERROR) << "Invalid Minidump for GetStream type " << stream_type; return NULL; } MinidumpStreamMap::iterator iterator = stream_map_->find(stream_type); if (iterator == stream_map_->end()) { // This stream type didn't exist in the directory. BPLOG(INFO) << "GetStream: type " << stream_type << " not present"; return NULL; } // Get a pointer so that the stored stream field can be altered. MinidumpStreamInfo* info = &iterator->second; if (info->stream) { // This cast is safe because info.stream is only populated by this // method, and there is a direct correlation between T and stream_type. *stream = static_cast(info->stream); return *stream; } u_int32_t stream_length; if (!SeekToStreamType(stream_type, &stream_length)) { BPLOG(ERROR) << "GetStream could not seek to stream type " << stream_type; return NULL; } scoped_ptr new_stream(new T(this)); if (!new_stream->Read(stream_length)) { BPLOG(ERROR) << "GetStream could not read stream type " << stream_type; return NULL; } *stream = new_stream.release(); info->stream = *stream; return *stream; } } // namespace google_breakpad