// Copyright (c) 2013 Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // stackwalker_mips.cc: MIPS-specific stackwalker. // // See stackwalker_mips.h for documentation. // // Author: Tata Elxsi #include "common/scoped_ptr.h" #include "google_breakpad/processor/call_stack.h" #include "google_breakpad/processor/code_modules.h" #include "google_breakpad/processor/memory_region.h" #include "google_breakpad/processor/source_line_resolver_interface.h" #include "google_breakpad/processor/stack_frame_cpu.h" #include "processor/cfi_frame_info.h" #include "processor/logging.h" #include "processor/postfix_evaluator-inl.h" #include "processor/stackwalker_mips.h" #include "processor/windows_frame_info.h" #include "google_breakpad/common/minidump_cpu_mips.h" namespace google_breakpad { StackwalkerMIPS::StackwalkerMIPS(const SystemInfo* system_info, const MDRawContextMIPS* context, MemoryRegion* memory, const CodeModules* modules, StackFrameSymbolizer* resolver_helper) : Stackwalker(system_info, memory, modules, resolver_helper), context_(context) { if (memory_) { if (context_->context_flags & MD_CONTEXT_MIPS64 ) { if (0xffffffffffffffff - memory_->GetBase() < memory_->GetSize() - 1) { BPLOG(ERROR) << "Memory out of range for stackwalking mips64: " << HexString(memory_->GetBase()) << "+" << HexString(memory_->GetSize()); memory_ = NULL; } } else { if (0xffffffff - memory_->GetBase() < memory_->GetSize() - 1) { BPLOG(ERROR) << "Memory out of range for stackwalking mips32: " << HexString(memory_->GetBase()) << "+" << HexString(memory_->GetSize()); memory_ = NULL; } } } } StackFrame* StackwalkerMIPS::GetContextFrame() { if (!context_) { BPLOG(ERROR) << "Can't get context frame without context."; return NULL; } StackFrameMIPS* frame = new StackFrameMIPS(); // The instruction pointer is stored directly in a register, so pull it // straight out of the CPU context structure. frame->context = *context_; frame->context_validity = StackFrameMIPS::CONTEXT_VALID_ALL; frame->trust = StackFrame::FRAME_TRUST_CONTEXT; frame->instruction = frame->context.epc; return frame; } // Register names for mips. static const char* const kRegisterNames[] = { "$zero", "$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3", "$to", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7", "$s0", "$s1", "$s2", "$s3", "$s4", "$s5", "$s6", "$s7", "$t8", "$t9", "$k0", "$k1", "$gp", "$sp", "$fp", "$ra", NULL // TODO(gordanac): add float point save registers }; StackFrameMIPS* StackwalkerMIPS::GetCallerByCFIFrameInfo( const vector& frames, CFIFrameInfo* cfi_frame_info) { StackFrameMIPS* last_frame = static_cast(frames.back()); if (context_->context_flags & MD_CONTEXT_MIPS) { uint32_t pc = 0; // Populate a dictionary with the valid register values in last_frame. CFIFrameInfo::RegisterValueMap callee_registers; // Use the STACK CFI data to recover the caller's register values. CFIFrameInfo::RegisterValueMap caller_registers; for (int i = 0; kRegisterNames[i]; ++i) { caller_registers[kRegisterNames[i]] = last_frame->context.iregs[i]; callee_registers[kRegisterNames[i]] = last_frame->context.iregs[i]; } if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_, &caller_registers)) { return NULL; } CFIFrameInfo::RegisterValueMap::const_iterator entry = caller_registers.find(".cfa"); if (entry != caller_registers.end()) { caller_registers["$sp"] = entry->second; } entry = caller_registers.find(".ra"); if (entry != caller_registers.end()) { caller_registers["$ra"] = entry->second; pc = entry->second - 2 * sizeof(pc); } caller_registers["$pc"] = pc; // Construct a new stack frame given the values the CFI recovered. scoped_ptr frame(new StackFrameMIPS()); for (int i = 0; kRegisterNames[i]; ++i) { CFIFrameInfo::RegisterValueMap::const_iterator caller_entry = caller_registers.find(kRegisterNames[i]); if (caller_entry != caller_registers.end()) { // The value of this register is recovered; fill the context with the // value from caller_registers. frame->context.iregs[i] = caller_entry->second; frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i); } else if (((i >= INDEX_MIPS_REG_S0 && i <= INDEX_MIPS_REG_S7) || (i > INDEX_MIPS_REG_GP && i < INDEX_MIPS_REG_RA)) && (last_frame->context_validity & StackFrameMIPS::RegisterValidFlag(i))) { // If the STACK CFI data doesn't mention some callee-save register, and // it is valid in the callee, assume the callee has not yet changed it. // Calee-save registers according to the MIPS o32 ABI specification are: // $s0 to $s7 // $sp, $s8 frame->context.iregs[i] = last_frame->context.iregs[i]; frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i); } } frame->context.epc = caller_registers["$pc"]; frame->instruction = caller_registers["$pc"]; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC; frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] = caller_registers["$ra"]; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA; frame->trust = StackFrame::FRAME_TRUST_CFI; return frame.release(); } else { uint64_t pc = 0; // Populate a dictionary with the valid register values in last_frame. CFIFrameInfo::RegisterValueMap callee_registers; // Use the STACK CFI data to recover the caller's register values. CFIFrameInfo::RegisterValueMap caller_registers; for (int i = 0; kRegisterNames[i]; ++i) { caller_registers[kRegisterNames[i]] = last_frame->context.iregs[i]; callee_registers[kRegisterNames[i]] = last_frame->context.iregs[i]; } if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_, &caller_registers)) { return NULL; } CFIFrameInfo::RegisterValueMap::const_iterator entry = caller_registers.find(".cfa"); if (entry != caller_registers.end()) { caller_registers["$sp"] = entry->second; } entry = caller_registers.find(".ra"); if (entry != caller_registers.end()) { caller_registers["$ra"] = entry->second; pc = entry->second - 2 * sizeof(pc); } caller_registers["$pc"] = pc; // Construct a new stack frame given the values the CFI recovered. scoped_ptr frame(new StackFrameMIPS()); for (int i = 0; kRegisterNames[i]; ++i) { CFIFrameInfo::RegisterValueMap::const_iterator caller_entry = caller_registers.find(kRegisterNames[i]); if (caller_entry != caller_registers.end()) { // The value of this register is recovered; fill the context with the // value from caller_registers. frame->context.iregs[i] = caller_entry->second; frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i); } else if (((i >= INDEX_MIPS_REG_S0 && i <= INDEX_MIPS_REG_S7) || (i >= INDEX_MIPS_REG_GP && i < INDEX_MIPS_REG_RA)) && (last_frame->context_validity & StackFrameMIPS::RegisterValidFlag(i))) { // If the STACK CFI data doesn't mention some callee-save register, and // it is valid in the callee, assume the callee has not yet changed it. // Calee-save registers according to the MIPS o32 ABI specification are: // $s0 to $s7 // $sp, $s8 frame->context.iregs[i] = last_frame->context.iregs[i]; frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i); } } frame->context.epc = caller_registers["$pc"]; frame->instruction = caller_registers["$pc"]; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC; frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] = caller_registers["$ra"]; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA; frame->trust = StackFrame::FRAME_TRUST_CFI; return frame.release(); } } StackFrame* StackwalkerMIPS::GetCallerFrame(const CallStack* stack, bool stack_scan_allowed) { if (!memory_ || !stack) { BPLOG(ERROR) << "Can't get caller frame without memory or stack"; return NULL; } const vector& frames = *stack->frames(); StackFrameMIPS* last_frame = static_cast(frames.back()); scoped_ptr new_frame; // See if there is DWARF call frame information covering this address. scoped_ptr cfi_frame_info( frame_symbolizer_->FindCFIFrameInfo(last_frame)); if (cfi_frame_info.get()) new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info.get())); // If caller frame is not found in CFI try analyzing the stack. if (stack_scan_allowed && !new_frame.get()) { new_frame.reset(GetCallerByStackScan(frames)); } // If nothing worked, tell the caller. if (!new_frame.get()) { return NULL; } // Should we terminate the stack walk? (end-of-stack or broken invariant) if (TerminateWalk(new_frame->context.epc, new_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP], last_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP], frames.size() == 1)) { return NULL; } return new_frame.release(); } StackFrameMIPS* StackwalkerMIPS::GetCallerByStackScan( const vector& frames) { const uint32_t kMaxFrameStackSize = 1024; const uint32_t kMinArgsOnStack = 4; StackFrameMIPS* last_frame = static_cast(frames.back()); if (context_->context_flags & MD_CONTEXT_MIPS) { uint32_t last_sp = last_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP]; uint32_t caller_pc, caller_sp, caller_fp; // Return address cannot be obtained directly. // Force stackwalking. // We cannot use frame pointer to get the return address. // We'll scan the stack for a // return address. This can happen if last_frame is executing code // for a module for which we don't have symbols. int count = kMaxFrameStackSize / sizeof(caller_pc); if (frames.size() > 1) { // In case of mips32 ABI stack frame of a nonleaf function // must have minimum stack frame assigned for 4 arguments (4 words). // Move stack pointer for 4 words to avoid reporting non-existing frames // for all frames except the topmost one. // There is no way of knowing if topmost frame belongs to a leaf or // a nonleaf function. last_sp += kMinArgsOnStack * sizeof(caller_pc); // Adjust 'count' so that return address is scanned only in limits // of one stack frame. count -= kMinArgsOnStack; } do { // Scanning for return address from stack pointer of the last frame. if (!ScanForReturnAddress(last_sp, &caller_sp, &caller_pc, count)) { // If we can't find an instruction pointer even with stack scanning, // give up. BPLOG(ERROR) << " ScanForReturnAddress failed "; return NULL; } // Get $fp stored in the stack frame. if (!memory_->GetMemoryAtAddress(caller_sp - sizeof(caller_pc), &caller_fp)) { BPLOG(INFO) << " GetMemoryAtAddress for fp failed " ; return NULL; } count = count - (caller_sp - last_sp) / sizeof(caller_pc); // Now scan the next address in the stack. last_sp = caller_sp + sizeof(caller_pc); } while ((caller_fp - caller_sp >= kMaxFrameStackSize) && count > 0); if (!count) { BPLOG(INFO) << " No frame found " ; return NULL; } // ScanForReturnAddress found a reasonable return address. Advance // $sp to the location above the one where the return address was // found. caller_sp += sizeof(caller_pc); // caller_pc is actually containing $ra value; // $pc is two instructions before $ra, // so the caller_pc needs to be decremented accordingly. caller_pc -= 2 * sizeof(caller_pc); // Create a new stack frame (ownership will be transferred to the caller) // and fill it in. StackFrameMIPS* frame = new StackFrameMIPS(); frame->trust = StackFrame::FRAME_TRUST_SCAN; frame->context = last_frame->context; frame->context.epc = caller_pc; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC; frame->instruction = caller_pc; frame->context.iregs[MD_CONTEXT_MIPS_REG_SP] = caller_sp; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_SP; frame->context.iregs[MD_CONTEXT_MIPS_REG_FP] = caller_fp; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_FP; frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] = caller_pc + 2 * sizeof(caller_pc); frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA; return frame; } else { uint64_t last_sp = last_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP]; uint64_t caller_pc, caller_sp, caller_fp; // Return address cannot be obtained directly. // Force stackwalking. // We cannot use frame pointer to get the return address. // We'll scan the stack for a // return address. This can happen if last_frame is executing code // for a module for which we don't have symbols. int count = kMaxFrameStackSize / sizeof(caller_pc); do { // Scanning for return address from stack pointer of the last frame. if (!ScanForReturnAddress(last_sp, &caller_sp, &caller_pc, count)) { // If we can't find an instruction pointer even with stack scanning, // give up. BPLOG(ERROR) << " ScanForReturnAddress failed "; return NULL; } // Get $fp stored in the stack frame. if (!memory_->GetMemoryAtAddress(caller_sp - sizeof(caller_pc), &caller_fp)) { BPLOG(INFO) << " GetMemoryAtAddress for fp failed " ; return NULL; } count = count - (caller_sp - last_sp) / sizeof(caller_pc); // Now scan the next address in the stack. last_sp = caller_sp + sizeof(caller_pc); } while ((caller_fp - caller_sp >= kMaxFrameStackSize) && count > 0); if (!count) { BPLOG(INFO) << " No frame found " ; return NULL; } // ScanForReturnAddress found a reasonable return address. Advance // $sp to the location above the one where the return address was // found. caller_sp += sizeof(caller_pc); // caller_pc is actually containing $ra value; // $pc is two instructions before $ra, // so the caller_pc needs to be decremented accordingly. caller_pc -= 2 * sizeof(caller_pc); // Create a new stack frame (ownership will be transferred to the caller) // and fill it in. StackFrameMIPS* frame = new StackFrameMIPS(); frame->trust = StackFrame::FRAME_TRUST_SCAN; frame->context = last_frame->context; frame->context.epc = caller_pc; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC; frame->instruction = caller_pc; frame->context.iregs[MD_CONTEXT_MIPS_REG_SP] = caller_sp; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_SP; frame->context.iregs[MD_CONTEXT_MIPS_REG_FP] = caller_fp; frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_FP; frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] = caller_pc + 2 * sizeof(caller_pc); frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA; return frame; } } } // namespace google_breakpad