// Copyright (c) 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Ray Sidney // Revamped and reorganized by Craig Silverstein // // This is the file that should be included by any file which declares // or defines a command line flag or wants to parse command line flags // or print a program usage message (which will include information about // flags). Executive summary, in the form of an example foo.cc file: // // #include "foo.h" // foo.h has a line "DECLARE_int32(start);" // // DEFINE_int32(end, 1000, "The last record to read"); // DECLARE_bool(verbose); // some other file has a DEFINE_bool(verbose, ...) // // void MyFunc() { // if (FLAGS_verbose) printf("Records %d-%d\n", FLAGS_start, FLAGS_end); // } // // Then, at the command-line: // ./foo --noverbose --start=5 --end=100 // // For more details, see // doc/gflags.html // // --- A note about thread-safety: // // We describe many functions in this routine as being thread-hostile, // thread-compatible, or thread-safe. Here are the meanings we use: // // thread-safe: it is safe for multiple threads to call this routine // (or, when referring to a class, methods of this class) // concurrently. // thread-hostile: it is not safe for multiple threads to call this // routine (or methods of this class) concurrently. In gflags, // most thread-hostile routines are intended to be called early in, // or even before, main() -- that is, before threads are spawned. // thread-compatible: it is safe for multiple threads to read from // this variable (when applied to variables), or to call const // methods of this class (when applied to classes), as long as no // other thread is writing to the variable or calling non-const // methods of this class. #ifndef GOOGLE_GFLAGS_H_ #define GOOGLE_GFLAGS_H_ #include #include // We care a lot about number of bits things take up. Unfortunately, // systems define their bit-specific ints in a lot of different ways. // We use our own way, and have a typedef to get there. // Note: these commands below may look like "#if 1" or "#if 0", but // that's because they were constructed that way at ./configure time. // Look at gflags.h.in to see how they're calculated (based on your config). #if 1 #include // the normal place uint16_t is defined #endif #if 1 #include // the normal place u_int16_t is defined #endif #if 1 #include // a third place for uint16_t or u_int16_t #endif namespace google { #if 1 // the C99 format typedef int32_t int32; typedef uint32_t uint32; typedef int64_t int64; typedef uint64_t uint64; #elif 1 // the BSD format typedef int32_t int32; typedef u_int32_t uint32; typedef int64_t int64; typedef u_int64_t uint64; #elif 0 // the windows (vc7) format typedef __int32 int32; typedef unsigned __int32 uint32; typedef __int64 int64; typedef unsigned __int64 uint64; #else #error Do not know how to define a 32-bit integer quantity on your system #endif // -------------------------------------------------------------------- // To actually define a flag in a file, use DEFINE_bool, // DEFINE_string, etc. at the bottom of this file. You may also find // it useful to register a validator with the flag. This ensures that // when the flag is parsed from the commandline, or is later set via // SetCommandLineOption, we call the validation function. // // The validation function should return true if the flag value is valid, and // false otherwise. If the function returns false for the new setting of the // flag, the flag will retain its current value. If it returns false for the // default value, InitGoogle will die. // // This function is safe to call at global construct time (as in the // example below). // // Example use: // static bool ValidatePort(const char* flagname, int32 value) { // if (value > 0 && value < 32768) // value is ok // return true; // printf("Invalid value for --%s: %d\n", flagname, (int)value); // return false; // } // DEFINE_int32(port, 0, "What port to listen on"); // static bool dummy = RegisterFlagValidator(&FLAGS_port, &ValidatePort); // Returns true if successfully registered, false if not (because the // first argument doesn't point to a command-line flag, or because a // validator is already registered for this flag). bool RegisterFlagValidator(const bool* flag, bool (*validate_fn)(const char*, bool)); bool RegisterFlagValidator(const int32* flag, bool (*validate_fn)(const char*, int32)); bool RegisterFlagValidator(const int64* flag, bool (*validate_fn)(const char*, int64)); bool RegisterFlagValidator(const uint64* flag, bool (*validate_fn)(const char*, uint64)); bool RegisterFlagValidator(const double* flag, bool (*validate_fn)(const char*, double)); bool RegisterFlagValidator(const std::string* flag, bool (*validate_fn)(const char*, const std::string&)); // -------------------------------------------------------------------- // These methods are the best way to get access to info about the // list of commandline flags. Note that these routines are pretty slow. // GetAllFlags: mostly-complete info about the list, sorted by file. // ShowUsageWithFlags: pretty-prints the list to stdout (what --help does) // ShowUsageWithFlagsRestrict: limit to filenames with restrict as a substr // // In addition to accessing flags, you can also access argv[0] (the program // name) and argv (the entire commandline), which we sock away a copy of. // These variables are static, so you should only set them once. struct CommandLineFlagInfo { std::string name; // the name of the flag std::string type; // the type of the flag: int32, etc std::string description; // the "help text" associated with the flag std::string current_value; // the current value, as a string std::string default_value; // the default value, as a string std::string filename; // 'cleaned' version of filename holding the flag bool has_validator_fn; // true if RegisterFlagValidator called on flag bool is_default; // true if the flag has default value }; extern void GetAllFlags(std::vector* OUTPUT); // These two are actually defined in commandlineflags_reporting.cc. extern void ShowUsageWithFlags(const char *argv0); // what --help does extern void ShowUsageWithFlagsRestrict(const char *argv0, const char *restrict); // Create a descriptive string for a flag. // Goes to some trouble to make pretty line breaks. extern std::string DescribeOneFlag(const CommandLineFlagInfo& flag); // Thread-hostile; meant to be called before any threads are spawned. extern void SetArgv(int argc, const char** argv); // The following functions are thread-safe as long as SetArgv() is // only called before any threads start. extern const std::vector& GetArgvs(); // all of argv as a vector extern const char* GetArgv(); // all of argv as a string extern const char* GetArgv0(); // only argv0 extern uint32 GetArgvSum(); // simple checksum of argv extern const char* ProgramInvocationName(); // argv0, or "UNKNOWN" if not set extern const char* ProgramInvocationShortName(); // basename(argv0) // ProgramUsage() is thread-safe as long as SetUsageMessage() is only // called before any threads start. extern const char* ProgramUsage(); // string set by SetUsageMessage() // -------------------------------------------------------------------- // Normally you access commandline flags by just saying "if (FLAGS_foo)" // or whatever, and set them by calling "FLAGS_foo = bar" (or, more // commonly, via the DEFINE_foo macro). But if you need a bit more // control, we have programmatic ways to get/set the flags as well. // These programmatic ways to access flags are thread-safe, but direct // access is only thread-compatible. // Return true iff the flagname was found. // OUTPUT is set to the flag's value, or unchanged if we return false. extern bool GetCommandLineOption(const char* name, std::string* OUTPUT); // Return true iff the flagname was found. OUTPUT is set to the flag's // CommandLineFlagInfo or unchanged if we return false. extern bool GetCommandLineFlagInfo(const char* name, CommandLineFlagInfo* OUTPUT); // Return the CommandLineFlagInfo of the flagname. exit() if name not found. // Example usage, to check if a flag's value is currently the default value: // if (GetCommandLineFlagInfoOrDie("foo").is_default) ... extern CommandLineFlagInfo GetCommandLineFlagInfoOrDie(const char* name); enum FlagSettingMode { // update the flag's value (can call this multiple times). SET_FLAGS_VALUE, // update the flag's value, but *only if* it has not yet been updated // with SET_FLAGS_VALUE, SET_FLAG_IF_DEFAULT, or "FLAGS_xxx = nondef". SET_FLAG_IF_DEFAULT, // set the flag's default value to this. If the flag has not yet updated // yet (via SET_FLAGS_VALUE, SET_FLAG_IF_DEFAULT, or "FLAGS_xxx = nondef") // change the flag's current value to the new default value as well. SET_FLAGS_DEFAULT }; // Set a particular flag ("command line option"). Returns a string // describing the new value that the option has been set to. The // return value API is not well-specified, so basically just depend on // it to be empty if the setting failed for some reason -- the name is // not a valid flag name, or the value is not a valid value -- and // non-empty else. // SetCommandLineOption uses set_mode == SET_FLAGS_VALUE (the common case) extern std::string SetCommandLineOption(const char* name, const char* value); extern std::string SetCommandLineOptionWithMode(const char* name, const char* value, FlagSettingMode set_mode); // -------------------------------------------------------------------- // Saves the states (value, default value, whether the user has set // the flag, registered validators, etc) of all flags, and restores // them when the FlagSaver is destroyed. This is very useful in // tests, say, when you want to let your tests change the flags, but // make sure that they get reverted to the original states when your // test is complete. // // Example usage: // void TestFoo() { // FlagSaver s1; // FLAG_foo = false; // FLAG_bar = "some value"; // // // test happens here. You can return at any time // // without worrying about restoring the FLAG values. // } // // Note: This class is marked with __attribute__((unused)) because all the // work is done in the constructor and destructor, so in the standard // usage example above, the compiler would complain that it's an // unused variable. // // This class is thread-safe. class FlagSaver { public: FlagSaver(); ~FlagSaver(); private: class FlagSaverImpl* impl_; // we use pimpl here to keep API steady FlagSaver(const FlagSaver&); // no copying! void operator=(const FlagSaver&); } __attribute__ ((unused)); // -------------------------------------------------------------------- // Some deprecated or hopefully-soon-to-be-deprecated functions. // This is often used for logging. TODO(csilvers): figure out a better way extern std::string CommandlineFlagsIntoString(); // Usually where this is used, a FlagSaver should be used instead. extern bool ReadFlagsFromString(const std::string& flagfilecontents, const char* prog_name, bool errors_are_fatal); // uses SET_FLAGS_VALUE // These let you manually implement --flagfile functionality. // DEPRECATED. extern bool AppendFlagsIntoFile(const std::string& filename, const char* prog_name); extern bool SaveCommandFlags(); // actually defined in google.cc ! extern bool ReadFromFlagsFile(const std::string& filename, const char* prog_name, bool errors_are_fatal); // uses SET_FLAGS_VALUE // -------------------------------------------------------------------- // Useful routines for initializing flags from the environment. // In each case, if 'varname' does not exist in the environment // return defval. If 'varname' does exist but is not valid // (e.g., not a number for an int32 flag), abort with an error. // Otherwise, return the value. NOTE: for booleans, for true use // 't' or 'T' or 'true' or '1', for false 'f' or 'F' or 'false' or '0'. extern bool BoolFromEnv(const char *varname, bool defval); extern int32 Int32FromEnv(const char *varname, int32 defval); extern int64 Int64FromEnv(const char *varname, int64 defval); extern uint64 Uint64FromEnv(const char *varname, uint64 defval); extern double DoubleFromEnv(const char *varname, double defval); extern const char *StringFromEnv(const char *varname, const char *defval); // -------------------------------------------------------------------- // The next two functions parse commandlineflags from main(): // Set the "usage" message for this program. For example: // string usage("This program does nothing. Sample usage:\n"); // usage += argv[0] + " "; // SetUsageMessage(usage); // Do not include commandline flags in the usage: we do that for you! // Thread-hostile; meant to be called before any threads are spawned. extern void SetUsageMessage(const std::string& usage); // Looks for flags in argv and parses them. Rearranges argv to put // flags first, or removes them entirely if remove_flags is true. // If a flag is defined more than once in the command line or flag // file, the last definition is used. // See top-of-file for more details on this function. #ifndef SWIG // In swig, use ParseCommandLineFlagsScript() instead. extern uint32 ParseCommandLineFlags(int *argc, char*** argv, bool remove_flags); #endif // Calls to ParseCommandLineNonHelpFlags and then to // HandleCommandLineHelpFlags can be used instead of a call to // ParseCommandLineFlags during initialization, in order to allow for // changing default values for some FLAGS (via // e.g. SetCommandLineOptionWithMode calls) between the time of // command line parsing and the time of dumping help information for // the flags as a result of command line parsing. // If a flag is defined more than once in the command line or flag // file, the last definition is used. extern uint32 ParseCommandLineNonHelpFlags(int *argc, char*** argv, bool remove_flags); // This is actually defined in commandlineflags_reporting.cc. // This function is misnamed (it also handles --version, etc.), but // it's too late to change that now. :-( extern void HandleCommandLineHelpFlags(); // in commandlineflags_reporting.cc // Allow command line reparsing. Disables the error normally // generated when an unknown flag is found, since it may be found in a // later parse. Thread-hostile; meant to be called before any threads // are spawned. extern void AllowCommandLineReparsing(); // Reparse the flags that have not yet been recognized. // Only flags registered since the last parse will be recognized. // Any flag value must be provided as part of the argument using "=", // not as a separate command line argument that follows the flag argument. // Intended for handling flags from dynamically loaded libraries, // since their flags are not registered until they are loaded. extern uint32 ReparseCommandLineNonHelpFlags(); // -------------------------------------------------------------------- // Now come the command line flag declaration/definition macros that // will actually be used. They're kind of hairy. A major reason // for this is initialization: we want people to be able to access // variables in global constructors and have that not crash, even if // their global constructor runs before the global constructor here. // (Obviously, we can't guarantee the flags will have the correct // default value in that case, but at least accessing them is safe.) // The only way to do that is have flags point to a static buffer. // So we make one, using a union to ensure proper alignment, and // then use placement-new to actually set up the flag with the // correct default value. In the same vein, we have to worry about // flag access in global destructors, so FlagRegisterer has to be // careful never to destroy the flag-values it constructs. // // Note that when we define a flag variable FLAGS_, we also // preemptively define a junk variable, FLAGS_no. This is to // cause a link-time error if someone tries to define 2 flags with // names like "logging" and "nologging". We do this because a bool // flag FLAG can be set from the command line to true with a "-FLAG" // argument, and to false with a "-noFLAG" argument, and so this can // potentially avert confusion. // // We also put flags into their own namespace. It is purposefully // named in an opaque way that people should have trouble typing // directly. The idea is that DEFINE puts the flag in the weird // namespace, and DECLARE imports the flag from there into the current // namespace. The net result is to force people to use DECLARE to get // access to a flag, rather than saying "extern bool FLAGS_whatever;" // or some such instead. We want this so we can put extra // functionality (like sanity-checking) in DECLARE if we want, and // make sure it is picked up everywhere. // // We also put the type of the variable in the namespace, so that // people can't DECLARE_int32 something that they DEFINE_bool'd // elsewhere. class FlagRegisterer { public: FlagRegisterer(const char* name, const char* type, const char* help, const char* filename, void* current_storage, void* defvalue_storage); }; extern bool FlagsTypeWarn(const char *name); // If your application #defines STRIP_FLAG_HELP to a non-zero value // before #including this file, we remove the help message from the // binary file. This can reduce the size of the resulting binary // somewhat, and may also be useful for security reasons. extern const char kStrippedFlagHelp[]; } #ifndef SWIG // In swig, ignore the main flag declarations #if defined(STRIP_FLAG_HELP) && STRIP_FLAG_HELP > 0 // Need this construct to avoid the 'defined but not used' warning. #define MAYBE_STRIPPED_HELP(txt) (false ? (txt) : kStrippedFlagHelp) #else #define MAYBE_STRIPPED_HELP(txt) txt #endif // Each command-line flag has two variables associated with it: one // with the current value, and one with the default value. However, // we have a third variable, which is where value is assigned; it's a // constant. This guarantees that FLAG_##value is initialized at // static initialization time (e.g. before program-start) rather than // than global construction time (which is after program-start but // before main), at least when 'value' is a compile-time constant. We // use a small trick for the "default value" variable, and call it // FLAGS_no. This serves the second purpose of assuring a // compile error if someone tries to define a flag named no // which is illegal (--foo and --nofoo both affect the "foo" flag). #define DEFINE_VARIABLE(type, shorttype, name, value, help) \ namespace fL##shorttype { \ static const type FLAGS_nono##name = value; \ type FLAGS_##name = FLAGS_nono##name; \ type FLAGS_no##name = FLAGS_nono##name; \ static ::google::FlagRegisterer o_##name( \ #name, #type, MAYBE_STRIPPED_HELP(help), __FILE__, \ &FLAGS_##name, &FLAGS_no##name); \ } \ using fL##shorttype::FLAGS_##name #define DECLARE_VARIABLE(type, shorttype, name) \ namespace fL##shorttype { \ extern type FLAGS_##name; \ } \ using fL##shorttype::FLAGS_##name // For DEFINE_bool, we want to do the extra check that the passed-in // value is actually a bool, and not a string or something that can be // coerced to a bool. These declarations (no definition needed!) will // help us do that, and never evaluate From, which is important. // We'll use 'sizeof(IsBool(val))' to distinguish. This code requires // that the compiler have different sizes for bool & double. Since // this is not guaranteed by the standard, we check it with a // compile-time assert (msg[-1] will give a compile-time error). namespace fLB { struct CompileAssert {}; typedef CompileAssert expected_sizeof_double_neq_sizeof_bool[ (sizeof(double) != sizeof(bool)) ? 1 : -1]; template double IsBoolFlag(const From& from); bool IsBoolFlag(bool from); } // namespace fLB #define DECLARE_bool(name) DECLARE_VARIABLE(bool,B, name) #define DEFINE_bool(name,val,txt) \ namespace fLB { \ typedef CompileAssert FLAG_##name##_value_is_not_a_bool[ \ (sizeof(::fLB::IsBoolFlag(val)) != sizeof(double)) ? 1 : -1]; \ } \ DEFINE_VARIABLE(bool,B, name, val, txt) #define DECLARE_int32(name) DECLARE_VARIABLE(::google::int32,I, name) #define DEFINE_int32(name,val,txt) DEFINE_VARIABLE(::google::int32,I, name, val, txt) #define DECLARE_int64(name) DECLARE_VARIABLE(::google::int64,I64, name) #define DEFINE_int64(name,val,txt) DEFINE_VARIABLE(::google::int64,I64, name, val, txt) #define DECLARE_uint64(name) DECLARE_VARIABLE(::google::uint64,U64, name) #define DEFINE_uint64(name,val,txt) DEFINE_VARIABLE(::google::uint64,U64, name, val, txt) #define DECLARE_double(name) DECLARE_VARIABLE(double,D, name) #define DEFINE_double(name,val,txt) DEFINE_VARIABLE(double,D, name, val, txt) // Strings are trickier, because they're not a POD, so we can't // construct them at static-initialization time (instead they get // constructed at global-constructor time, which is much later). To // try to avoid crashes in that case, we use a char buffer to store // the string, which we can static-initialize, and then placement-new // into it later. It's not perfect, but the best we can do. #define DECLARE_string(name) namespace fLS { extern std::string& FLAGS_##name; } \ using fLS::FLAGS_##name // We need to define a var named FLAGS_no##name so people don't define // --string and --nostring. And we need a temporary place to put val // so we don't have to evaluate it twice. Two great needs that go // great together! // The weird 'using' + 'extern' inside the fLS namespace is to work around // an unknown compiler bug/issue with the gcc 4.2.1 on SUSE 10. See // https://github.com/gflags/gflags/issues/31 #define DEFINE_string(name, val, txt) \ namespace fLS { \ static union { void* align; char s[sizeof(std::string)]; } s_##name[2]; \ const std::string* const FLAGS_no##name = new (s_##name[0].s) std::string(val); \ static ::google::FlagRegisterer o_##name( \ #name, "string", MAYBE_STRIPPED_HELP(txt), __FILE__, \ s_##name[0].s, new (s_##name[1].s) std::string(*FLAGS_no##name)); \ extern std::string& FLAGS_##name; \ using fLS::FLAGS_##name; \ std::string& FLAGS_##name = *(reinterpret_cast(s_##name[0].s)); \ } \ using fLS::FLAGS_##name #endif // SWIG #endif // GOOGLE_GFLAGS_H_