// Copyright 2019 Google Inc. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "tools/windows/converter_exe/escaping.h" #include #define kApb kAsciiPropertyBits const unsigned char kAsciiPropertyBits[256] = { 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x00 0x40, 0x68, 0x48, 0x48, 0x48, 0x48, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x10 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x28, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, // 0x20 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x84, 0x84, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05, // 0x40 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, // 0x50 0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05, // 0x60 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, // 0x70 0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x40, }; // Use !! to suppress the warning C4800 of forcing 'int' to 'bool'. static inline bool ascii_isspace(unsigned char c) { return !!(kApb[c] & 0x08); } /////////////////////////////////// // scoped_array /////////////////////////////////// // scoped_array is like scoped_ptr, except that the caller must allocate // with new [] and the destructor deletes objects with delete []. // // As with scoped_ptr, a scoped_array either points to an object // or is NULL. A scoped_array owns the object that it points to. // scoped_array is thread-compatible, and once you index into it, // the returned objects have only the threadsafety guarantees of T. // // Size: sizeof(scoped_array) == sizeof(C*) template class scoped_array { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_array. // The input parameter must be allocated with new []. explicit scoped_array(C* p = NULL) : array_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_array() { enum { type_must_be_complete = sizeof(C) }; delete[] array_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != array_) { enum { type_must_be_complete = sizeof(C) }; delete[] array_; array_ = p; } } // Get one element of the current object. // Will assert() if there is no current object, or index i is negative. C& operator[](std::ptrdiff_t i) const { assert(i >= 0); assert(array_ != NULL); return array_[i]; } // Get a pointer to the zeroth element of the current object. // If there is no current object, return NULL. C* get() const { return array_; } // Comparison operators. // These return whether a scoped_array and a raw pointer refer to // the same array, not just to two different but equal arrays. bool operator==(const C* p) const { return array_ == p; } bool operator!=(const C* p) const { return array_ != p; } // Swap two scoped arrays. void swap(scoped_array& p2) { C* tmp = array_; array_ = p2.array_; p2.array_ = tmp; } // Release an array. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = array_; array_ = NULL; return retVal; } private: C* array_; // Forbid comparison of different scoped_array types. template bool operator==(scoped_array const& p2) const; template bool operator!=(scoped_array const& p2) const; // Disallow evil constructors scoped_array(const scoped_array&); void operator=(const scoped_array&); }; /////////////////////////////////// // Escape methods /////////////////////////////////// namespace strings { // Return a mutable char* pointing to a string's internal buffer, // which may not be null-terminated. Writing through this pointer will // modify the string. // // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the // next call to a string method that invalidates iterators. // // As of 2006-04, there is no standard-blessed way of getting a // mutable reference to a string's internal buffer. However, issue 530 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530) // proposes this as the method. According to Matt Austern, this should // already work on all current implementations. inline char* string_as_array(string* str) { // DO NOT USE const_cast(str->data())! See the unittest for why. return str->empty() ? NULL : &*str->begin(); } int CalculateBase64EscapedLen(int input_len, bool do_padding) { // these formulae were copied from comments that used to go with the base64 // encoding functions int intermediate_result = 8 * input_len + 5; assert(intermediate_result > 0); // make sure we didn't overflow int len = intermediate_result / 6; if (do_padding) len = ((len + 3) / 4) * 4; return len; } // Base64Escape does padding, so this calculation includes padding. int CalculateBase64EscapedLen(int input_len) { return CalculateBase64EscapedLen(input_len, true); } // ---------------------------------------------------------------------- // int Base64Unescape() - base64 decoder // int Base64Escape() - base64 encoder // int WebSafeBase64Unescape() - Google's variation of base64 decoder // int WebSafeBase64Escape() - Google's variation of base64 encoder // // Check out // http://www.cis.ohio-state.edu/htbin/rfc/rfc2045.html for formal // description, but what we care about is that... // Take the encoded stuff in groups of 4 characters and turn each // character into a code 0 to 63 thus: // A-Z map to 0 to 25 // a-z map to 26 to 51 // 0-9 map to 52 to 61 // +(- for WebSafe) maps to 62 // /(_ for WebSafe) maps to 63 // There will be four numbers, all less than 64 which can be represented // by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively). // Arrange the 6 digit binary numbers into three bytes as such: // aaaaaabb bbbbcccc ccdddddd // Equals signs (one or two) are used at the end of the encoded block to // indicate that the text was not an integer multiple of three bytes long. // ---------------------------------------------------------------------- int Base64UnescapeInternal(const char *src, int szsrc, char *dest, int szdest, const signed char* unbase64) { static const char kPad64 = '='; int decode = 0; int destidx = 0; int state = 0; unsigned int ch = 0; unsigned int temp = 0; // The GET_INPUT macro gets the next input character, skipping // over any whitespace, and stopping when we reach the end of the // string or when we read any non-data character. The arguments are // an arbitrary identifier (used as a label for goto) and the number // of data bytes that must remain in the input to avoid aborting the // loop. #define GET_INPUT(label, remain) \ label: \ --szsrc; \ ch = *src++; \ decode = unbase64[ch]; \ if (decode < 0) { \ if (ascii_isspace((char)ch) && szsrc >= remain) \ goto label; \ state = 4 - remain; \ break; \ } // if dest is null, we're just checking to see if it's legal input // rather than producing output. (I suspect this could just be done // with a regexp...). We duplicate the loop so this test can be // outside it instead of in every iteration. if (dest) { // This loop consumes 4 input bytes and produces 3 output bytes // per iteration. We can't know at the start that there is enough // data left in the string for a full iteration, so the loop may // break out in the middle; if so 'state' will be set to the // number of input bytes read. while (szsrc >= 4) { // We'll start by optimistically assuming that the next four // bytes of the string (src[0..3]) are four good data bytes // (that is, no nulls, whitespace, padding chars, or illegal // chars). We need to test src[0..2] for nulls individually // before constructing temp to preserve the property that we // never read past a null in the string (no matter how long // szsrc claims the string is). if (!src[0] || !src[1] || !src[2] || (temp = ((unbase64[static_cast(src[0])] << 18) | (unbase64[static_cast(src[1])] << 12) | (unbase64[static_cast(src[2])] << 6) | (unbase64[static_cast(src[3])]))) & 0x80000000) { // Iff any of those four characters was bad (null, illegal, // whitespace, padding), then temp's high bit will be set // (because unbase64[] is -1 for all bad characters). // // We'll back up and resort to the slower decoder, which knows // how to handle those cases. GET_INPUT(first, 4); temp = decode; GET_INPUT(second, 3); temp = (temp << 6) | decode; GET_INPUT(third, 2); temp = (temp << 6) | decode; GET_INPUT(fourth, 1); temp = (temp << 6) | decode; } else { // We really did have four good data bytes, so advance four // characters in the string. szsrc -= 4; src += 4; decode = -1; ch = '\0'; } // temp has 24 bits of input, so write that out as three bytes. if (destidx+3 > szdest) return -1; dest[destidx+2] = (char)temp; temp >>= 8; dest[destidx+1] = (char)temp; temp >>= 8; dest[destidx] = (char)temp; destidx += 3; } } else { while (szsrc >= 4) { if (!src[0] || !src[1] || !src[2] || (temp = ((unbase64[static_cast(src[0])] << 18) | (unbase64[static_cast(src[1])] << 12) | (unbase64[static_cast(src[2])] << 6) | (unbase64[static_cast(src[3])]))) & 0x80000000) { GET_INPUT(first_no_dest, 4); GET_INPUT(second_no_dest, 3); GET_INPUT(third_no_dest, 2); GET_INPUT(fourth_no_dest, 1); } else { szsrc -= 4; src += 4; decode = -1; ch = '\0'; } destidx += 3; } } #undef GET_INPUT // if the loop terminated because we read a bad character, return // now. if (decode < 0 && ch != '\0' && ch != kPad64 && !ascii_isspace((char)ch)) return -1; if (ch == kPad64) { // if we stopped by hitting an '=', un-read that character -- we'll // look at it again when we count to check for the proper number of // equals signs at the end. ++szsrc; --src; } else { // This loop consumes 1 input byte per iteration. It's used to // clean up the 0-3 input bytes remaining when the first, faster // loop finishes. 'temp' contains the data from 'state' input // characters read by the first loop. while (szsrc > 0) { --szsrc; ch = *src++; decode = unbase64[ch]; if (decode < 0) { if (ascii_isspace((char)ch)) { continue; } else if (ch == '\0') { break; } else if (ch == kPad64) { // back up one character; we'll read it again when we check // for the correct number of equals signs at the end. ++szsrc; --src; break; } else { return -1; } } // Each input character gives us six bits of output. temp = (temp << 6) | decode; ++state; if (state == 4) { // If we've accumulated 24 bits of output, write that out as // three bytes. if (dest) { if (destidx+3 > szdest) return -1; dest[destidx+2] = (char)temp; temp >>= 8; dest[destidx+1] = (char)temp; temp >>= 8; dest[destidx] = (char)temp; } destidx += 3; state = 0; temp = 0; } } } // Process the leftover data contained in 'temp' at the end of the input. int expected_equals = 0; switch (state) { case 0: // Nothing left over; output is a multiple of 3 bytes. break; case 1: // Bad input; we have 6 bits left over. return -1; case 2: // Produce one more output byte from the 12 input bits we have left. if (dest) { if (destidx+1 > szdest) return -1; temp >>= 4; dest[destidx] = (char)temp; } ++destidx; expected_equals = 2; break; case 3: // Produce two more output bytes from the 18 input bits we have left. if (dest) { if (destidx+2 > szdest) return -1; temp >>= 2; dest[destidx+1] = (char)temp; temp >>= 8; dest[destidx] = (char)temp; } destidx += 2; expected_equals = 1; break; default: // state should have no other values at this point. fprintf(stdout, "This can't happen; base64 decoder state = %d", state); } // The remainder of the string should be all whitespace, mixed with // exactly 0 equals signs, or exactly 'expected_equals' equals // signs. (Always accepting 0 equals signs is a google extension // not covered in the RFC.) int equals = 0; while (szsrc > 0 && *src) { if (*src == kPad64) ++equals; else if (!ascii_isspace(*src)) return -1; --szsrc; ++src; } return (equals == 0 || equals == expected_equals) ? destidx : -1; } int Base64Unescape(const char *src, int szsrc, char *dest, int szdest) { static const signed char UnBase64[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; // The above array was generated by the following code // #include // #include // #include // main() // { // static const char Base64[] = // "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; // char *pos; // int idx, i, j; // printf(" "); // for (i = 0; i < 255; i += 8) { // for (j = i; j < i + 8; j++) { // pos = strchr(Base64, j); // if ((pos == NULL) || (j == 0)) // idx = -1; // else // idx = pos - Base64; // if (idx == -1) // printf(" %2d, ", idx); // else // printf(" %2d/*%c*/,", idx, j); // } // printf("\n "); // } // } return Base64UnescapeInternal(src, szsrc, dest, szdest, UnBase64); } bool Base64Unescape(const char *src, int slen, string* dest) { // Determine the size of the output string. Base64 encodes every 3 bytes into // 4 characters. any leftover chars are added directly for good measure. // This is documented in the base64 RFC: http://www.ietf.org/rfc/rfc3548.txt const int dest_len = 3 * (slen / 4) + (slen % 4); dest->resize(dest_len); // We are getting the destination buffer by getting the beginning of the // string and converting it into a char *. const int len = Base64Unescape(src, slen, string_as_array(dest), dest->size()); if (len < 0) { return false; } // could be shorter if there was padding assert(len <= dest_len); dest->resize(len); return true; } // Base64Escape // // NOTE: We have to use an unsigned type for src because code built // in the the /google tree treats characters as signed unless // otherwised specified. // // TODO(who?): Move this function to use the char* type for "src" int Base64EscapeInternal(const unsigned char *src, int szsrc, char *dest, int szdest, const char *base64, bool do_padding) { static const char kPad64 = '='; if (szsrc <= 0) return 0; char *cur_dest = dest; const unsigned char *cur_src = src; // Three bytes of data encodes to four characters of cyphertext. // So we can pump through three-byte chunks atomically. while (szsrc > 2) { /* keep going until we have less than 24 bits */ if ((szdest -= 4) < 0) return 0; cur_dest[0] = base64[cur_src[0] >> 2]; cur_dest[1] = base64[((cur_src[0] & 0x03) << 4) + (cur_src[1] >> 4)]; cur_dest[2] = base64[((cur_src[1] & 0x0f) << 2) + (cur_src[2] >> 6)]; cur_dest[3] = base64[cur_src[2] & 0x3f]; cur_dest += 4; cur_src += 3; szsrc -= 3; } /* now deal with the tail (<=2 bytes) */ switch (szsrc) { case 0: // Nothing left; nothing more to do. break; case 1: // One byte left: this encodes to two characters, and (optionally) // two pad characters to round out the four-character cypherblock. if ((szdest -= 2) < 0) return 0; cur_dest[0] = base64[cur_src[0] >> 2]; cur_dest[1] = base64[(cur_src[0] & 0x03) << 4]; cur_dest += 2; if (do_padding) { if ((szdest -= 2) < 0) return 0; cur_dest[0] = kPad64; cur_dest[1] = kPad64; cur_dest += 2; } break; case 2: // Two bytes left: this encodes to three characters, and (optionally) // one pad character to round out the four-character cypherblock. if ((szdest -= 3) < 0) return 0; cur_dest[0] = base64[cur_src[0] >> 2]; cur_dest[1] = base64[((cur_src[0] & 0x03) << 4) + (cur_src[1] >> 4)]; cur_dest[2] = base64[(cur_src[1] & 0x0f) << 2]; cur_dest += 3; if (do_padding) { if ((szdest -= 1) < 0) return 0; cur_dest[0] = kPad64; cur_dest += 1; } break; default: // Should not be reached: blocks of 3 bytes are handled // in the while loop before this switch statement. fprintf(stderr, "Logic problem? szsrc = %d", szsrc); assert(false); break; } return (cur_dest - dest); } static const char kBase64Chars[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static const char kWebSafeBase64Chars[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) { return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true); } void Base64Escape(const unsigned char *src, int szsrc, string* dest, bool do_padding) { const int max_escaped_size = CalculateBase64EscapedLen(szsrc, do_padding); dest->clear(); dest->resize(max_escaped_size + 1, '\0'); const int escaped_len = Base64EscapeInternal(src, szsrc, &*dest->begin(), dest->size(), kBase64Chars, do_padding); assert(max_escaped_size <= escaped_len); dest->resize(escaped_len); } void Base64Escape(const string& src, string* dest) { Base64Escape(reinterpret_cast(src.c_str()), src.size(), dest, true); } //////////////////////////////////////////////////// // WebSafe methods //////////////////////////////////////////////////// int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) { static const signed char UnBase64[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*-*/, -1, -1, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; // The above array was generated by the following code // #include // #include // #include // main() // { // static const char Base64[] = // "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; // char *pos; // int idx, i, j; // printf(" "); // for (i = 0; i < 255; i += 8) { // for (j = i; j < i + 8; j++) { // pos = strchr(Base64, j); // if ((pos == NULL) || (j == 0)) // idx = -1; // else // idx = pos - Base64; // if (idx == -1) // printf(" %2d, ", idx); // else // printf(" %2d/*%c*/,", idx, j); // } // printf("\n "); // } // } return Base64UnescapeInternal(src, szsrc, dest, szdest, UnBase64); } bool WebSafeBase64Unescape(const char *src, int slen, string* dest) { int dest_len = 3 * (slen / 4) + (slen % 4); dest->clear(); dest->resize(dest_len); int len = WebSafeBase64Unescape(src, slen, &*dest->begin(), dest->size()); if (len < 0) { dest->clear(); return false; } // could be shorter if there was padding assert(len <= dest_len); dest->resize(len); return true; } bool WebSafeBase64Unescape(const string& src, string* dest) { return WebSafeBase64Unescape(src.data(), src.size(), dest); } int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest, int szdest, bool do_padding) { return Base64EscapeInternal(src, szsrc, dest, szdest, kWebSafeBase64Chars, do_padding); } void WebSafeBase64Escape(const unsigned char *src, int szsrc, string *dest, bool do_padding) { const int max_escaped_size = CalculateBase64EscapedLen(szsrc, do_padding); dest->clear(); dest->resize(max_escaped_size + 1, '\0'); const int escaped_len = Base64EscapeInternal(src, szsrc, &*dest->begin(), dest->size(), kWebSafeBase64Chars, do_padding); assert(max_escaped_size <= escaped_len); dest->resize(escaped_len); } void WebSafeBase64EscapeInternal(const string& src, string* dest, bool do_padding) { int encoded_len = CalculateBase64EscapedLen(src.size()); scoped_array buf(new char[encoded_len]); int len = WebSafeBase64Escape(reinterpret_cast(src.c_str()), src.size(), buf.get(), encoded_len, do_padding); dest->assign(buf.get(), len); } void WebSafeBase64Escape(const string& src, string* dest) { WebSafeBase64EscapeInternal(src, dest, false); } void WebSafeBase64EscapeWithPadding(const string& src, string* dest) { WebSafeBase64EscapeInternal(src, dest, true); } } // namespace strings