aboutsummaryrefslogtreecommitdiff
path: root/src/common/linux/dump_symbols.cc
blob: 660f133e5ea540c46cd33743b7c740ef01f5c889 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
// Copyright (c) 2011 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Restructured in 2009 by: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>

// dump_symbols.cc: implement google_breakpad::WriteSymbolFile:
// Find all the debugging info in a file and dump it as a Breakpad symbol file.

#include "common/linux/dump_symbols.h"

#include <assert.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <link.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>

#include <iostream>
#include <set>
#include <string>
#include <utility>
#include <vector>

#include "common/dwarf/bytereader-inl.h"
#include "common/dwarf/dwarf2diehandler.h"
#include "common/dwarf_cfi_to_module.h"
#include "common/dwarf_cu_to_module.h"
#include "common/dwarf_line_to_module.h"
#include "common/dwarf_range_list_handler.h"
#include "common/linux/crc32.h"
#include "common/linux/eintr_wrapper.h"
#include "common/linux/elfutils.h"
#include "common/linux/elfutils-inl.h"
#include "common/linux/elf_symbols_to_module.h"
#include "common/linux/file_id.h"
#include "common/memory_allocator.h"
#include "common/module.h"
#include "common/path_helper.h"
#include "common/scoped_ptr.h"
#ifndef NO_STABS_SUPPORT
#include "common/stabs_reader.h"
#include "common/stabs_to_module.h"
#endif
#include "common/using_std_string.h"

// This namespace contains helper functions.
namespace {

using google_breakpad::DumpOptions;
using google_breakpad::DwarfCFIToModule;
using google_breakpad::DwarfCUToModule;
using google_breakpad::DwarfLineToModule;
using google_breakpad::DwarfRangeListHandler;
using google_breakpad::ElfClass;
using google_breakpad::ElfClass32;
using google_breakpad::ElfClass64;
using google_breakpad::FileID;
using google_breakpad::FindElfSectionByName;
using google_breakpad::GetOffset;
using google_breakpad::IsValidElf;
using google_breakpad::kDefaultBuildIdSize;
using google_breakpad::Module;
using google_breakpad::PageAllocator;
#ifndef NO_STABS_SUPPORT
using google_breakpad::StabsToModule;
#endif
using google_breakpad::scoped_ptr;
using google_breakpad::wasteful_vector;

// Define AARCH64 ELF architecture if host machine does not include this define.
#ifndef EM_AARCH64
#define EM_AARCH64      183
#endif

//
// FDWrapper
//
// Wrapper class to make sure opened file is closed.
//
class FDWrapper {
 public:
  explicit FDWrapper(int fd) :
    fd_(fd) {}
  ~FDWrapper() {
    if (fd_ != -1)
      close(fd_);
  }
  int get() {
    return fd_;
  }
  int release() {
    int fd = fd_;
    fd_ = -1;
    return fd;
  }
 private:
  int fd_;
};

//
// MmapWrapper
//
// Wrapper class to make sure mapped regions are unmapped.
//
class MmapWrapper {
 public:
  MmapWrapper() : is_set_(false) {}
  ~MmapWrapper() {
    if (is_set_ && base_ != NULL) {
      assert(size_ > 0);
      munmap(base_, size_);
    }
  }
  void set(void *mapped_address, size_t mapped_size) {
    is_set_ = true;
    base_ = mapped_address;
    size_ = mapped_size;
  }
  void release() {
    assert(is_set_);
    is_set_ = false;
    base_ = NULL;
    size_ = 0;
  }

 private:
  bool is_set_;
  void* base_;
  size_t size_;
};

// Find the preferred loading address of the binary.
template<typename ElfClass>
typename ElfClass::Addr GetLoadingAddress(
    const typename ElfClass::Phdr* program_headers,
    int nheader) {
  typedef typename ElfClass::Phdr Phdr;

  // For non-PIC executables (e_type == ET_EXEC), the load address is
  // the start address of the first PT_LOAD segment.  (ELF requires
  // the segments to be sorted by load address.)  For PIC executables
  // and dynamic libraries (e_type == ET_DYN), this address will
  // normally be zero.
  for (int i = 0; i < nheader; ++i) {
    const Phdr& header = program_headers[i];
    if (header.p_type == PT_LOAD)
      return header.p_vaddr;
  }
  return 0;
}

#ifndef NO_STABS_SUPPORT
template<typename ElfClass>
bool LoadStabs(const typename ElfClass::Ehdr* elf_header,
               const typename ElfClass::Shdr* stab_section,
               const typename ElfClass::Shdr* stabstr_section,
               const bool big_endian,
               Module* module) {
  // A callback object to handle data from the STABS reader.
  StabsToModule handler(module);
  // Find the addresses of the STABS data, and create a STABS reader object.
  // On Linux, STABS entries always have 32-bit values, regardless of the
  // address size of the architecture whose code they're describing, and
  // the strings are always "unitized".
  const uint8_t* stabs =
      GetOffset<ElfClass, uint8_t>(elf_header, stab_section->sh_offset);
  const uint8_t* stabstr =
      GetOffset<ElfClass, uint8_t>(elf_header, stabstr_section->sh_offset);
  google_breakpad::StabsReader reader(stabs, stab_section->sh_size,
                                      stabstr, stabstr_section->sh_size,
                                      big_endian, 4, true, &handler);
  // Read the STABS data, and do post-processing.
  if (!reader.Process())
    return false;
  handler.Finalize();
  return true;
}
#endif  // NO_STABS_SUPPORT

// A range handler that accepts rangelist data parsed by
// dwarf2reader::RangeListReader and populates a range vector (typically
// owned by a function) with the results.
class DumperRangesHandler : public DwarfCUToModule::RangesHandler {
 public:
  DumperRangesHandler(const uint8_t *buffer, uint64 size,
                      dwarf2reader::ByteReader* reader)
      : buffer_(buffer), size_(size), reader_(reader) { }

  bool ReadRanges(uint64 offset, Module::Address base_address,
                  vector<Module::Range>* ranges) {
    DwarfRangeListHandler handler(base_address, ranges);
    dwarf2reader::RangeListReader rangelist_reader(buffer_, size_, reader_,
                                                   &handler);

    return rangelist_reader.ReadRangeList(offset);
  }

 private:
  const uint8_t *buffer_;
  uint64 size_;
  dwarf2reader::ByteReader* reader_;
};

// A line-to-module loader that accepts line number info parsed by
// dwarf2reader::LineInfo and populates a Module and a line vector
// with the results.
class DumperLineToModule: public DwarfCUToModule::LineToModuleHandler {
 public:
  // Create a line-to-module converter using BYTE_READER.
  explicit DumperLineToModule(dwarf2reader::ByteReader *byte_reader)
      : byte_reader_(byte_reader) { }
  void StartCompilationUnit(const string& compilation_dir) {
    compilation_dir_ = compilation_dir;
  }
  void ReadProgram(const uint8_t *program, uint64 length,
                   Module* module, std::vector<Module::Line>* lines) {
    DwarfLineToModule handler(module, compilation_dir_, lines);
    dwarf2reader::LineInfo parser(program, length, byte_reader_, &handler);
    parser.Start();
  }
 private:
  string compilation_dir_;
  dwarf2reader::ByteReader *byte_reader_;
};

template<typename ElfClass>
bool LoadDwarf(const string& dwarf_filename,
               const typename ElfClass::Ehdr* elf_header,
               const bool big_endian,
               bool handle_inter_cu_refs,
               Module* module) {
  typedef typename ElfClass::Shdr Shdr;

  const dwarf2reader::Endianness endianness = big_endian ?
      dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
  dwarf2reader::ByteReader byte_reader(endianness);

  // Construct a context for this file.
  DwarfCUToModule::FileContext file_context(dwarf_filename,
                                            module,
                                            handle_inter_cu_refs);

  // Build a map of the ELF file's sections.
  const Shdr* sections =
      GetOffset<ElfClass, Shdr>(elf_header, elf_header->e_shoff);
  int num_sections = elf_header->e_shnum;
  const Shdr* section_names = sections + elf_header->e_shstrndx;
  for (int i = 0; i < num_sections; i++) {
    const Shdr* section = &sections[i];
    string name = GetOffset<ElfClass, char>(elf_header,
                                            section_names->sh_offset) +
                  section->sh_name;
    const uint8_t *contents = GetOffset<ElfClass, uint8_t>(elf_header,
                                                           section->sh_offset);
    file_context.AddSectionToSectionMap(name, contents, section->sh_size);
  }

  // Optional .debug_ranges reader
  scoped_ptr<DumperRangesHandler> ranges_handler;
  dwarf2reader::SectionMap::const_iterator ranges_entry =
      file_context.section_map().find(".debug_ranges");
  if (ranges_entry != file_context.section_map().end()) {
    const std::pair<const uint8_t *, uint64>& ranges_section =
      ranges_entry->second;
    ranges_handler.reset(
      new DumperRangesHandler(ranges_section.first, ranges_section.second,
                              &byte_reader));
  }

  // Parse all the compilation units in the .debug_info section.
  DumperLineToModule line_to_module(&byte_reader);
  dwarf2reader::SectionMap::const_iterator debug_info_entry =
      file_context.section_map().find(".debug_info");
  assert(debug_info_entry != file_context.section_map().end());
  const std::pair<const uint8_t *, uint64>& debug_info_section =
      debug_info_entry->second;
  // This should never have been called if the file doesn't have a
  // .debug_info section.
  assert(debug_info_section.first);
  uint64 debug_info_length = debug_info_section.second;
  for (uint64 offset = 0; offset < debug_info_length;) {
    // Make a handler for the root DIE that populates MODULE with the
    // data that was found.
    DwarfCUToModule::WarningReporter reporter(dwarf_filename, offset);
    DwarfCUToModule root_handler(&file_context, &line_to_module,
                                 ranges_handler.get(), &reporter);
    // Make a Dwarf2Handler that drives the DIEHandler.
    dwarf2reader::DIEDispatcher die_dispatcher(&root_handler);
    // Make a DWARF parser for the compilation unit at OFFSET.
    dwarf2reader::CompilationUnit reader(dwarf_filename,
                                         file_context.section_map(),
                                         offset,
                                         &byte_reader,
                                         &die_dispatcher);
    // Process the entire compilation unit; get the offset of the next.
    offset += reader.Start();
  }
  return true;
}

// Fill REGISTER_NAMES with the register names appropriate to the
// machine architecture given in HEADER, indexed by the register
// numbers used in DWARF call frame information. Return true on
// success, or false if HEADER's machine architecture is not
// supported.
template<typename ElfClass>
bool DwarfCFIRegisterNames(const typename ElfClass::Ehdr* elf_header,
                           std::vector<string>* register_names) {
  switch (elf_header->e_machine) {
    case EM_386:
      *register_names = DwarfCFIToModule::RegisterNames::I386();
      return true;
    case EM_ARM:
      *register_names = DwarfCFIToModule::RegisterNames::ARM();
      return true;
    case EM_AARCH64:
      *register_names = DwarfCFIToModule::RegisterNames::ARM64();
      return true;
    case EM_MIPS:
      *register_names = DwarfCFIToModule::RegisterNames::MIPS();
      return true;
    case EM_X86_64:
      *register_names = DwarfCFIToModule::RegisterNames::X86_64();
      return true;
    default:
      return false;
  }
}

template<typename ElfClass>
bool LoadDwarfCFI(const string& dwarf_filename,
                  const typename ElfClass::Ehdr* elf_header,
                  const char* section_name,
                  const typename ElfClass::Shdr* section,
                  const bool eh_frame,
                  const typename ElfClass::Shdr* got_section,
                  const typename ElfClass::Shdr* text_section,
                  const bool big_endian,
                  Module* module) {
  // Find the appropriate set of register names for this file's
  // architecture.
  std::vector<string> register_names;
  if (!DwarfCFIRegisterNames<ElfClass>(elf_header, &register_names)) {
    fprintf(stderr, "%s: unrecognized ELF machine architecture '%d';"
            " cannot convert DWARF call frame information\n",
            dwarf_filename.c_str(), elf_header->e_machine);
    return false;
  }

  const dwarf2reader::Endianness endianness = big_endian ?
      dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;

  // Find the call frame information and its size.
  const uint8_t *cfi =
      GetOffset<ElfClass, uint8_t>(elf_header, section->sh_offset);
  size_t cfi_size = section->sh_size;

  // Plug together the parser, handler, and their entourages.
  DwarfCFIToModule::Reporter module_reporter(dwarf_filename, section_name);
  DwarfCFIToModule handler(module, register_names, &module_reporter);
  dwarf2reader::ByteReader byte_reader(endianness);

  byte_reader.SetAddressSize(ElfClass::kAddrSize);

  // Provide the base addresses for .eh_frame encoded pointers, if
  // possible.
  byte_reader.SetCFIDataBase(section->sh_addr, cfi);
  if (got_section)
    byte_reader.SetDataBase(got_section->sh_addr);
  if (text_section)
    byte_reader.SetTextBase(text_section->sh_addr);

  dwarf2reader::CallFrameInfo::Reporter dwarf_reporter(dwarf_filename,
                                                       section_name);
  dwarf2reader::CallFrameInfo parser(cfi, cfi_size,
                                     &byte_reader, &handler, &dwarf_reporter,
                                     eh_frame);
  parser.Start();
  return true;
}

bool LoadELF(const string& obj_file, MmapWrapper* map_wrapper,
             void** elf_header) {
  int obj_fd = open(obj_file.c_str(), O_RDONLY);
  if (obj_fd < 0) {
    fprintf(stderr, "Failed to open ELF file '%s': %s\n",
            obj_file.c_str(), strerror(errno));
    return false;
  }
  FDWrapper obj_fd_wrapper(obj_fd);
  struct stat st;
  if (fstat(obj_fd, &st) != 0 && st.st_size <= 0) {
    fprintf(stderr, "Unable to fstat ELF file '%s': %s\n",
            obj_file.c_str(), strerror(errno));
    return false;
  }
  void* obj_base = mmap(NULL, st.st_size,
                        PROT_READ | PROT_WRITE, MAP_PRIVATE, obj_fd, 0);
  if (obj_base == MAP_FAILED) {
    fprintf(stderr, "Failed to mmap ELF file '%s': %s\n",
            obj_file.c_str(), strerror(errno));
    return false;
  }
  map_wrapper->set(obj_base, st.st_size);
  *elf_header = obj_base;
  if (!IsValidElf(*elf_header)) {
    fprintf(stderr, "Not a valid ELF file: %s\n", obj_file.c_str());
    return false;
  }
  return true;
}

// Get the endianness of ELF_HEADER. If it's invalid, return false.
template<typename ElfClass>
bool ElfEndianness(const typename ElfClass::Ehdr* elf_header,
                   bool* big_endian) {
  if (elf_header->e_ident[EI_DATA] == ELFDATA2LSB) {
    *big_endian = false;
    return true;
  }
  if (elf_header->e_ident[EI_DATA] == ELFDATA2MSB) {
    *big_endian = true;
    return true;
  }

  fprintf(stderr, "bad data encoding in ELF header: %d\n",
          elf_header->e_ident[EI_DATA]);
  return false;
}

// Given |left_abspath|, find the absolute path for |right_path| and see if the
// two absolute paths are the same.
bool IsSameFile(const char* left_abspath, const string& right_path) {
  char right_abspath[PATH_MAX];
  if (!realpath(right_path.c_str(), right_abspath))
    return false;
  return strcmp(left_abspath, right_abspath) == 0;
}

// Read the .gnu_debuglink and get the debug file name. If anything goes
// wrong, return an empty string.
string ReadDebugLink(const uint8_t *debuglink,
                     const size_t debuglink_size,
                     const bool big_endian,
                     const string& obj_file,
                     const std::vector<string>& debug_dirs) {
  // Include '\0' + CRC32 (4 bytes).
  size_t debuglink_len = strlen(reinterpret_cast<const char *>(debuglink)) + 5;
  debuglink_len = 4 * ((debuglink_len + 3) / 4);  // Round up to 4 bytes.

  // Sanity check.
  if (debuglink_len != debuglink_size) {
    fprintf(stderr, "Mismatched .gnu_debuglink string / section size: "
            "%zx %zx\n", debuglink_len, debuglink_size);
    return string();
  }

  char obj_file_abspath[PATH_MAX];
  if (!realpath(obj_file.c_str(), obj_file_abspath)) {
    fprintf(stderr, "Cannot resolve absolute path for %s\n", obj_file.c_str());
    return string();
  }

  std::vector<string> searched_paths;
  string debuglink_path;
  std::vector<string>::const_iterator it;
  for (it = debug_dirs.begin(); it < debug_dirs.end(); ++it) {
    const string& debug_dir = *it;
    debuglink_path = debug_dir + "/" +
                     reinterpret_cast<const char *>(debuglink);

    // There is the annoying case of /path/to/foo.so having foo.so as the
    // debug link file name. Thus this may end up opening /path/to/foo.so again,
    // and there is a small chance of the two files having the same CRC.
    if (IsSameFile(obj_file_abspath, debuglink_path))
      continue;

    searched_paths.push_back(debug_dir);
    int debuglink_fd = open(debuglink_path.c_str(), O_RDONLY);
    if (debuglink_fd < 0)
      continue;

    FDWrapper debuglink_fd_wrapper(debuglink_fd);

    // The CRC is the last 4 bytes in |debuglink|.
    const dwarf2reader::Endianness endianness = big_endian ?
        dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
    dwarf2reader::ByteReader byte_reader(endianness);
    uint32_t expected_crc =
        byte_reader.ReadFourBytes(&debuglink[debuglink_size - 4]);

    uint32_t actual_crc = 0;
    while (true) {
      const size_t kReadSize = 4096;
      char buf[kReadSize];
      ssize_t bytes_read = HANDLE_EINTR(read(debuglink_fd, &buf, kReadSize));
      if (bytes_read < 0) {
        fprintf(stderr, "Error reading debug ELF file %s.\n",
                debuglink_path.c_str());
        return string();
      }
      if (bytes_read == 0)
        break;
      actual_crc = google_breakpad::UpdateCrc32(actual_crc, buf, bytes_read);
    }
    if (actual_crc != expected_crc) {
      fprintf(stderr, "Error reading debug ELF file - CRC32 mismatch: %s\n",
              debuglink_path.c_str());
      continue;
    }

    // Found debug file.
    return debuglink_path;
  }

  // Not found case.
  fprintf(stderr, "Failed to find debug ELF file for '%s' after trying:\n",
          obj_file.c_str());
  for (it = searched_paths.begin(); it < searched_paths.end(); ++it) {
    const string& debug_dir = *it;
    fprintf(stderr, "  %s/%s\n", debug_dir.c_str(), debuglink);
  }
  return string();
}

//
// LoadSymbolsInfo
//
// Holds the state between the two calls to LoadSymbols() in case it's necessary
// to follow the .gnu_debuglink section and load debug information from a
// different file.
//
template<typename ElfClass>
class LoadSymbolsInfo {
 public:
  typedef typename ElfClass::Addr Addr;

  explicit LoadSymbolsInfo(const std::vector<string>& dbg_dirs) :
    debug_dirs_(dbg_dirs),
    has_loading_addr_(false) {}

  // Keeps track of which sections have been loaded so sections don't
  // accidentally get loaded twice from two different files.
  void LoadedSection(const string &section) {
    if (loaded_sections_.count(section) == 0) {
      loaded_sections_.insert(section);
    } else {
      fprintf(stderr, "Section %s has already been loaded.\n",
              section.c_str());
    }
  }

  // The ELF file and linked debug file are expected to have the same preferred
  // loading address.
  void set_loading_addr(Addr addr, const string &filename) {
    if (!has_loading_addr_) {
      loading_addr_ = addr;
      loaded_file_ = filename;
      return;
    }

    if (addr != loading_addr_) {
      fprintf(stderr,
              "ELF file '%s' and debug ELF file '%s' "
              "have different load addresses.\n",
              loaded_file_.c_str(), filename.c_str());
      assert(false);
    }
  }

  // Setters and getters
  const std::vector<string>& debug_dirs() const {
    return debug_dirs_;
  }

  string debuglink_file() const {
    return debuglink_file_;
  }
  void set_debuglink_file(string file) {
    debuglink_file_ = file;
  }

 private:
  const std::vector<string>& debug_dirs_; // Directories in which to
                                          // search for the debug ELF file.

  string debuglink_file_;  // Full path to the debug ELF file.

  bool has_loading_addr_;  // Indicate if LOADING_ADDR_ is valid.

  Addr loading_addr_;  // Saves the preferred loading address from the
                       // first call to LoadSymbols().

  string loaded_file_;  // Name of the file loaded from the first call to
                        // LoadSymbols().

  std::set<string> loaded_sections_;  // Tracks the Loaded ELF sections
                                      // between calls to LoadSymbols().
};

template<typename ElfClass>
bool LoadSymbols(const string& obj_file,
                 const bool big_endian,
                 const typename ElfClass::Ehdr* elf_header,
                 const bool read_gnu_debug_link,
                 LoadSymbolsInfo<ElfClass>* info,
                 const DumpOptions& options,
                 Module* module) {
  typedef typename ElfClass::Addr Addr;
  typedef typename ElfClass::Phdr Phdr;
  typedef typename ElfClass::Shdr Shdr;

  Addr loading_addr = GetLoadingAddress<ElfClass>(
      GetOffset<ElfClass, Phdr>(elf_header, elf_header->e_phoff),
      elf_header->e_phnum);
  module->SetLoadAddress(loading_addr);
  info->set_loading_addr(loading_addr, obj_file);

  const Shdr* sections =
      GetOffset<ElfClass, Shdr>(elf_header, elf_header->e_shoff);
  const Shdr* section_names = sections + elf_header->e_shstrndx;
  const char* names =
      GetOffset<ElfClass, char>(elf_header, section_names->sh_offset);
  const char *names_end = names + section_names->sh_size;
  bool found_debug_info_section = false;
  bool found_usable_info = false;

  if (options.symbol_data != ONLY_CFI) {
#ifndef NO_STABS_SUPPORT
    // Look for STABS debugging information, and load it if present.
    const Shdr* stab_section =
      FindElfSectionByName<ElfClass>(".stab", SHT_PROGBITS,
                                     sections, names, names_end,
                                     elf_header->e_shnum);
    if (stab_section) {
      const Shdr* stabstr_section = stab_section->sh_link + sections;
      if (stabstr_section) {
        found_debug_info_section = true;
        found_usable_info = true;
        info->LoadedSection(".stab");
        if (!LoadStabs<ElfClass>(elf_header, stab_section, stabstr_section,
                                 big_endian, module)) {
          fprintf(stderr, "%s: \".stab\" section found, but failed to load"
                  " STABS debugging information\n", obj_file.c_str());
        }
      }
    }
#endif  // NO_STABS_SUPPORT

    // Look for DWARF debugging information, and load it if present.
    const Shdr* dwarf_section =
      FindElfSectionByName<ElfClass>(".debug_info", SHT_PROGBITS,
                                     sections, names, names_end,
                                     elf_header->e_shnum);

    // .debug_info section type is SHT_PROGBITS for mips on pnacl toolchains,
    // but MIPS_DWARF for regular gnu toolchains, so both need to be checked
    if (elf_header->e_machine == EM_MIPS && !dwarf_section) {
      dwarf_section =
        FindElfSectionByName<ElfClass>(".debug_info", SHT_MIPS_DWARF,
                                       sections, names, names_end,
                                       elf_header->e_shnum);
    }

    if (dwarf_section) {
      found_debug_info_section = true;
      found_usable_info = true;
      info->LoadedSection(".debug_info");
      if (!LoadDwarf<ElfClass>(obj_file, elf_header, big_endian,
                               options.handle_inter_cu_refs, module)) {
        fprintf(stderr, "%s: \".debug_info\" section found, but failed to load "
                "DWARF debugging information\n", obj_file.c_str());
      }
    }

    // See if there are export symbols available.
    const Shdr* symtab_section =
        FindElfSectionByName<ElfClass>(".symtab", SHT_SYMTAB,
                                       sections, names, names_end,
                                       elf_header->e_shnum);
    const Shdr* strtab_section =
        FindElfSectionByName<ElfClass>(".strtab", SHT_STRTAB,
                                       sections, names, names_end,
                                       elf_header->e_shnum);
    if (symtab_section && strtab_section) {
      info->LoadedSection(".symtab");

      const uint8_t* symtab =
          GetOffset<ElfClass, uint8_t>(elf_header,
                                       symtab_section->sh_offset);
      const uint8_t* strtab =
          GetOffset<ElfClass, uint8_t>(elf_header,
                                       strtab_section->sh_offset);
      bool result =
          ELFSymbolsToModule(symtab,
                             symtab_section->sh_size,
                             strtab,
                             strtab_section->sh_size,
                             big_endian,
                             ElfClass::kAddrSize,
                             module);
      found_usable_info = found_usable_info || result;
    } else {
      // Look in dynsym only if full symbol table was not available.
      const Shdr* dynsym_section =
          FindElfSectionByName<ElfClass>(".dynsym", SHT_DYNSYM,
                                         sections, names, names_end,
                                         elf_header->e_shnum);
      const Shdr* dynstr_section =
          FindElfSectionByName<ElfClass>(".dynstr", SHT_STRTAB,
                                         sections, names, names_end,
                                         elf_header->e_shnum);
      if (dynsym_section && dynstr_section) {
        info->LoadedSection(".dynsym");

        const uint8_t* dynsyms =
            GetOffset<ElfClass, uint8_t>(elf_header,
                                         dynsym_section->sh_offset);
        const uint8_t* dynstrs =
            GetOffset<ElfClass, uint8_t>(elf_header,
                                         dynstr_section->sh_offset);
        bool result =
            ELFSymbolsToModule(dynsyms,
                               dynsym_section->sh_size,
                               dynstrs,
                               dynstr_section->sh_size,
                               big_endian,
                               ElfClass::kAddrSize,
                               module);
        found_usable_info = found_usable_info || result;
      }
    }
  }

  if (options.symbol_data != NO_CFI) {
    // Dwarf Call Frame Information (CFI) is actually independent from
    // the other DWARF debugging information, and can be used alone.
    const Shdr* dwarf_cfi_section =
        FindElfSectionByName<ElfClass>(".debug_frame", SHT_PROGBITS,
                                       sections, names, names_end,
                                       elf_header->e_shnum);

    // .debug_frame section type is SHT_PROGBITS for mips on pnacl toolchains,
    // but MIPS_DWARF for regular gnu toolchains, so both need to be checked
    if (elf_header->e_machine == EM_MIPS && !dwarf_cfi_section) {
      dwarf_cfi_section =
          FindElfSectionByName<ElfClass>(".debug_frame", SHT_MIPS_DWARF,
                                        sections, names, names_end,
                                        elf_header->e_shnum);
    }

    if (dwarf_cfi_section) {
      // Ignore the return value of this function; even without call frame
      // information, the other debugging information could be perfectly
      // useful.
      info->LoadedSection(".debug_frame");
      bool result =
          LoadDwarfCFI<ElfClass>(obj_file, elf_header, ".debug_frame",
                                 dwarf_cfi_section, false, 0, 0, big_endian,
                                 module);
      found_usable_info = found_usable_info || result;
    }

    // Linux C++ exception handling information can also provide
    // unwinding data.
    const Shdr* eh_frame_section =
        FindElfSectionByName<ElfClass>(".eh_frame", SHT_PROGBITS,
                                       sections, names, names_end,
                                       elf_header->e_shnum);
    if (eh_frame_section) {
      // Pointers in .eh_frame data may be relative to the base addresses of
      // certain sections. Provide those sections if present.
      const Shdr* got_section =
          FindElfSectionByName<ElfClass>(".got", SHT_PROGBITS,
                                         sections, names, names_end,
                                         elf_header->e_shnum);
      const Shdr* text_section =
          FindElfSectionByName<ElfClass>(".text", SHT_PROGBITS,
                                         sections, names, names_end,
                                         elf_header->e_shnum);
      info->LoadedSection(".eh_frame");
      // As above, ignore the return value of this function.
      bool result =
          LoadDwarfCFI<ElfClass>(obj_file, elf_header, ".eh_frame",
                                 eh_frame_section, true,
                                 got_section, text_section, big_endian, module);
      found_usable_info = found_usable_info || result;
    }
  }

  if (!found_debug_info_section) {
    fprintf(stderr, "%s: file contains no debugging information"
            " (no \".stab\" or \".debug_info\" sections)\n",
            obj_file.c_str());

    // Failed, but maybe there's a .gnu_debuglink section?
    if (read_gnu_debug_link) {
      const Shdr* gnu_debuglink_section
          = FindElfSectionByName<ElfClass>(".gnu_debuglink", SHT_PROGBITS,
                                           sections, names,
                                           names_end, elf_header->e_shnum);
      if (gnu_debuglink_section) {
        if (!info->debug_dirs().empty()) {
          const uint8_t *debuglink_contents =
              GetOffset<ElfClass, uint8_t>(elf_header,
                                           gnu_debuglink_section->sh_offset);
          string debuglink_file =
              ReadDebugLink(debuglink_contents,
                            gnu_debuglink_section->sh_size,
                            big_endian,
                            obj_file,
                            info->debug_dirs());
          info->set_debuglink_file(debuglink_file);
        } else {
          fprintf(stderr, ".gnu_debuglink section found in '%s', "
                  "but no debug path specified.\n", obj_file.c_str());
        }
      } else {
        fprintf(stderr, "%s does not contain a .gnu_debuglink section.\n",
                obj_file.c_str());
      }
    } else {
      // Return true if some usable information was found, since the caller
      // doesn't want to use .gnu_debuglink.
      return found_usable_info;
    }

    // No debug info was found, let the user try again with .gnu_debuglink
    // if present.
    return false;
  }

  return true;
}

// Return the breakpad symbol file identifier for the architecture of
// ELF_HEADER.
template<typename ElfClass>
const char* ElfArchitecture(const typename ElfClass::Ehdr* elf_header) {
  typedef typename ElfClass::Half Half;
  Half arch = elf_header->e_machine;
  switch (arch) {
    case EM_386:        return "x86";
    case EM_ARM:        return "arm";
    case EM_AARCH64:    return "arm64";
    case EM_MIPS:       return "mips";
    case EM_PPC64:      return "ppc64";
    case EM_PPC:        return "ppc";
    case EM_S390:       return "s390";
    case EM_SPARC:      return "sparc";
    case EM_SPARCV9:    return "sparcv9";
    case EM_X86_64:     return "x86_64";
    default: return NULL;
  }
}

template<typename ElfClass>
bool SanitizeDebugFile(const typename ElfClass::Ehdr* debug_elf_header,
                       const string& debuglink_file,
                       const string& obj_filename,
                       const char* obj_file_architecture,
                       const bool obj_file_is_big_endian) {
  const char* debug_architecture =
      ElfArchitecture<ElfClass>(debug_elf_header);
  if (!debug_architecture) {
    fprintf(stderr, "%s: unrecognized ELF machine architecture: %d\n",
            debuglink_file.c_str(), debug_elf_header->e_machine);
    return false;
  }
  if (strcmp(obj_file_architecture, debug_architecture)) {
    fprintf(stderr, "%s with ELF machine architecture %s does not match "
            "%s with ELF architecture %s\n",
            debuglink_file.c_str(), debug_architecture,
            obj_filename.c_str(), obj_file_architecture);
    return false;
  }
  bool debug_big_endian;
  if (!ElfEndianness<ElfClass>(debug_elf_header, &debug_big_endian))
    return false;
  if (debug_big_endian != obj_file_is_big_endian) {
    fprintf(stderr, "%s and %s does not match in endianness\n",
            obj_filename.c_str(), debuglink_file.c_str());
    return false;
  }
  return true;
}

template<typename ElfClass>
bool InitModuleForElfClass(const typename ElfClass::Ehdr* elf_header,
                           const string& obj_filename,
                           const string& obj_os,
                           scoped_ptr<Module>& module) {
  PageAllocator allocator;
  wasteful_vector<uint8_t> identifier(&allocator, kDefaultBuildIdSize);
  if (!FileID::ElfFileIdentifierFromMappedFile(elf_header, identifier)) {
    fprintf(stderr, "%s: unable to generate file identifier\n",
            obj_filename.c_str());
    return false;
  }

  const char *architecture = ElfArchitecture<ElfClass>(elf_header);
  if (!architecture) {
    fprintf(stderr, "%s: unrecognized ELF machine architecture: %d\n",
            obj_filename.c_str(), elf_header->e_machine);
    return false;
  }

  string name;
  char name_buf[NAME_MAX];
  memset(name_buf, 0, sizeof(name_buf));
  name = google_breakpad::ElfFileSoNameFromMappedFile(elf_header, name_buf,
                                                      sizeof(name_buf))
             ? name_buf
             : google_breakpad::BaseName(obj_filename);

  // Add an extra "0" at the end.  PDB files on Windows have an 'age'
  // number appended to the end of the file identifier; this isn't
  // really used or necessary on other platforms, but be consistent.
  string id = FileID::ConvertIdentifierToUUIDString(identifier) + "0";
  // This is just the raw Build ID in hex.
  string code_id = FileID::ConvertIdentifierToString(identifier);

  module.reset(new Module(name, obj_os, architecture, id, code_id));

  return true;
}

template<typename ElfClass>
bool ReadSymbolDataElfClass(const typename ElfClass::Ehdr* elf_header,
                            const string& obj_filename,
                            const string& obj_os,
                            const std::vector<string>& debug_dirs,
                            const DumpOptions& options,
                            Module** out_module) {
  typedef typename ElfClass::Ehdr Ehdr;

  *out_module = NULL;

  scoped_ptr<Module> module;
  if (!InitModuleForElfClass<ElfClass>(elf_header, obj_filename, obj_os,
                                       module)) {
    return false;
  }

  // Figure out what endianness this file is.
  bool big_endian;
  if (!ElfEndianness<ElfClass>(elf_header, &big_endian))
    return false;

  LoadSymbolsInfo<ElfClass> info(debug_dirs);
  if (!LoadSymbols<ElfClass>(obj_filename, big_endian, elf_header,
                             !debug_dirs.empty(), &info,
                             options, module.get())) {
    const string debuglink_file = info.debuglink_file();
    if (debuglink_file.empty())
      return false;

    // Load debuglink ELF file.
    fprintf(stderr, "Found debugging info in %s\n", debuglink_file.c_str());
    MmapWrapper debug_map_wrapper;
    Ehdr* debug_elf_header = NULL;
    if (!LoadELF(debuglink_file, &debug_map_wrapper,
                 reinterpret_cast<void**>(&debug_elf_header)) ||
        !SanitizeDebugFile<ElfClass>(debug_elf_header, debuglink_file,
                                     obj_filename,
                                     module->architecture().c_str(),
                                     big_endian)) {
      return false;
    }

    if (!LoadSymbols<ElfClass>(debuglink_file, big_endian,
                               debug_elf_header, false, &info,
                               options, module.get())) {
      return false;
    }
  }

  *out_module = module.release();
  return true;
}

}  // namespace

namespace google_breakpad {

// Not explicitly exported, but not static so it can be used in unit tests.
bool ReadSymbolDataInternal(const uint8_t* obj_file,
                            const string& obj_filename,
                            const string& obj_os,
                            const std::vector<string>& debug_dirs,
                            const DumpOptions& options,
                            Module** module) {
  if (!IsValidElf(obj_file)) {
    fprintf(stderr, "Not a valid ELF file: %s\n", obj_filename.c_str());
    return false;
  }

  int elfclass = ElfClass(obj_file);
  if (elfclass == ELFCLASS32) {
    return ReadSymbolDataElfClass<ElfClass32>(
        reinterpret_cast<const Elf32_Ehdr*>(obj_file), obj_filename, obj_os,
        debug_dirs, options, module);
  }
  if (elfclass == ELFCLASS64) {
    return ReadSymbolDataElfClass<ElfClass64>(
        reinterpret_cast<const Elf64_Ehdr*>(obj_file), obj_filename, obj_os,
        debug_dirs, options, module);
  }

  return false;
}

bool WriteSymbolFile(const string &load_path,
                     const string &obj_file,
                     const string &obj_os,
                     const std::vector<string>& debug_dirs,
                     const DumpOptions& options,
                     std::ostream &sym_stream) {
  Module* module;
  if (!ReadSymbolData(load_path, obj_file, obj_os, debug_dirs, options,
                      &module))
    return false;

  bool result = module->Write(sym_stream, options.symbol_data);
  delete module;
  return result;
}

// Read the selected object file's debugging information, and write out the
// header only to |stream|. Return true on success; if an error occurs, report
// it and return false.
bool WriteSymbolFileHeader(const string& load_path,
                           const string& obj_file,
                           const string& obj_os,
                           std::ostream &sym_stream) {
  MmapWrapper map_wrapper;
  void* elf_header = NULL;
  if (!LoadELF(load_path, &map_wrapper, &elf_header)) {
    fprintf(stderr, "Could not load ELF file: %s\n", obj_file.c_str());
    return false;
  }

  if (!IsValidElf(elf_header)) {
    fprintf(stderr, "Not a valid ELF file: %s\n", obj_file.c_str());
    return false;
  }

  int elfclass = ElfClass(elf_header);
  scoped_ptr<Module> module;
  if (elfclass == ELFCLASS32) {
    if (!InitModuleForElfClass<ElfClass32>(
        reinterpret_cast<const Elf32_Ehdr*>(elf_header), obj_file, obj_os,
        module)) {
      fprintf(stderr, "Failed to load ELF module: %s\n", obj_file.c_str());
      return false;
    }
  } else if (elfclass == ELFCLASS64) {
    if (!InitModuleForElfClass<ElfClass64>(
        reinterpret_cast<const Elf64_Ehdr*>(elf_header), obj_file, obj_os,
        module)) {
      fprintf(stderr, "Failed to load ELF module: %s\n", obj_file.c_str());
      return false;
    }
  } else {
    fprintf(stderr, "Unsupported module file: %s\n", obj_file.c_str());
    return false;
  }

  return module->Write(sym_stream, ALL_SYMBOL_DATA);
}

bool ReadSymbolData(const string& load_path,
                    const string& obj_file,
                    const string& obj_os,
                    const std::vector<string>& debug_dirs,
                    const DumpOptions& options,
                    Module** module) {
  MmapWrapper map_wrapper;
  void* elf_header = NULL;
  if (!LoadELF(load_path, &map_wrapper, &elf_header))
    return false;

  return ReadSymbolDataInternal(reinterpret_cast<uint8_t*>(elf_header),
                                obj_file, obj_os, debug_dirs, options, module);
}

}  // namespace google_breakpad