1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/* Copyright 2013 Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
/* minidump_format.h: A cross-platform reimplementation of minidump-related
* portions of DbgHelp.h from the Windows Platform SDK.
*
* (This is C99 source, please don't corrupt it with C++.)
*
* This file contains the necessary definitions to read minidump files
* produced on ARM. These files may be read on any platform provided
* that the alignments of these structures on the processing system are
* identical to the alignments of these structures on the producing system.
* For this reason, precise-sized types are used. The structures defined
* by this file have been laid out to minimize alignment problems by
* ensuring that all members are aligned on their natural boundaries.
* In some cases, tail-padding may be significant when different ABIs specify
* different tail-padding behaviors. To avoid problems when reading or
* writing affected structures, MD_*_SIZE macros are provided where needed,
* containing the useful size of the structures without padding.
*
* Structures that are defined by Microsoft to contain a zero-length array
* are instead defined here to contain an array with one element, as
* zero-length arrays are forbidden by standard C and C++. In these cases,
* *_minsize constants are provided to be used in place of sizeof. For a
* cleaner interface to these sizes when using C++, see minidump_size.h.
*
* These structures are also sufficient to populate minidump files.
*
* Because precise data type sizes are crucial for this implementation to
* function properly and portably, a set of primitive types with known sizes
* are used as the basis of each structure defined by this file.
*
* Author: Colin Blundell
*/
/*
* ARM64 support
*/
#ifndef GOOGLE_BREAKPAD_COMMON_MINIDUMP_CPU_ARM64_H__
#define GOOGLE_BREAKPAD_COMMON_MINIDUMP_CPU_ARM64_H__
#include "google_breakpad/common/breakpad_types.h"
#define MD_FLOATINGSAVEAREA_ARM64_FPR_COUNT 32
#define MD_CONTEXT_ARM64_GPR_COUNT 33
typedef struct {
/* 32 128-bit floating point registers, d0 .. d31. */
uint128_struct regs[MD_FLOATINGSAVEAREA_ARM64_FPR_COUNT];
uint32_t fpcr; /* FPU control register */
uint32_t fpsr; /* FPU status register */
} MDFloatingSaveAreaARM64;
/* For (MDRawContextARM64).context_flags. These values indicate the type of
* context stored in the structure. */
#define MD_CONTEXT_ARM64 0x00400000
#define MD_CONTEXT_ARM64_CONTROL (MD_CONTEXT_ARM64 | 0x00000001)
#define MD_CONTEXT_ARM64_INTEGER (MD_CONTEXT_ARM64 | 0x00000002)
#define MD_CONTEXT_ARM64_FLOATING_POINT (MD_CONTEXT_ARM64 | 0x00000004)
#define MD_CONTEXT_ARM64_DEBUG (MD_CONTEXT_ARM64 | 0x00000008)
#define MD_CONTEXT_ARM64_FULL (MD_CONTEXT_ARM64_CONTROL | \
MD_CONTEXT_ARM64_INTEGER | \
MD_CONTEXT_ARM64_FLOATING_POINT)
#define MD_CONTEXT_ARM64_ALL (MD_CONTEXT_ARM64_FULL | MD_CONTEXT_ARM64_DEBUG)
typedef struct {
/* Determines which fields of this struct are populated */
uint32_t context_flags;
/* CPSR (flags, basically): 32 bits:
bit 31 - N (negative)
bit 30 - Z (zero)
bit 29 - C (carry)
bit 28 - V (overflow)
bit 27 - Q (saturation flag, sticky)
All other fields -- ignore */
uint32_t cpsr;
/* 33 64-bit integer registers, x0 .. x31 + the PC
* Note the following fixed uses:
* x29 is the frame pointer
* x30 is the link register
* x31 is the stack pointer
* The PC is effectively x32.
*/
uint64_t iregs[MD_CONTEXT_ARM64_GPR_COUNT];
/* The next field is included with MD_CONTEXT64_ARM_FLOATING_POINT */
MDFloatingSaveAreaARM64 float_save;
uint32_t bcr[8];
uint64_t bvr[8];
uint32_t wcr[2];
uint64_t wvr[2];
} MDRawContextARM64;
typedef struct {
uint32_t fpsr; /* FPU status register */
uint32_t fpcr; /* FPU control register */
/* 32 128-bit floating point registers, d0 .. d31. */
uint128_struct regs[MD_FLOATINGSAVEAREA_ARM64_FPR_COUNT];
} MDFloatingSaveAreaARM64_Old;
/* Use the same 32-bit alignment when accessing this structure from 64-bit code
* as is used natively in 32-bit code. */
#pragma pack(push, 4)
typedef struct {
/* The next field determines the layout of the structure, and which parts
* of it are populated
*/
uint64_t context_flags;
/* 33 64-bit integer registers, x0 .. x31 + the PC
* Note the following fixed uses:
* x29 is the frame pointer
* x30 is the link register
* x31 is the stack pointer
* The PC is effectively x32.
*/
uint64_t iregs[MD_CONTEXT_ARM64_GPR_COUNT];
/* CPSR (flags, basically): 32 bits:
bit 31 - N (negative)
bit 30 - Z (zero)
bit 29 - C (carry)
bit 28 - V (overflow)
bit 27 - Q (saturation flag, sticky)
All other fields -- ignore */
uint32_t cpsr;
/* The next field is included with MD_CONTEXT64_ARM_FLOATING_POINT */
MDFloatingSaveAreaARM64_Old float_save;
} MDRawContextARM64_Old;
#pragma pack(pop)
/* Indices into iregs for registers with a dedicated or conventional
* purpose.
*/
enum MDARM64RegisterNumbers {
MD_CONTEXT_ARM64_REG_FP = 29,
MD_CONTEXT_ARM64_REG_LR = 30,
MD_CONTEXT_ARM64_REG_SP = 31,
MD_CONTEXT_ARM64_REG_PC = 32
};
/* For (MDRawContextARM64_Old).context_flags. These values indicate the type of
* context stored in the structure. MD_CONTEXT_ARM64_OLD is Breakpad-defined.
* This value was chosen to avoid likely conflicts with MD_CONTEXT_*
* for other CPUs. */
#define MD_CONTEXT_ARM64_OLD 0x80000000
#define MD_CONTEXT_ARM64_INTEGER_OLD (MD_CONTEXT_ARM64_OLD | 0x00000002)
#define MD_CONTEXT_ARM64_FLOATING_POINT_OLD (MD_CONTEXT_ARM64_OLD | 0x00000004)
#define MD_CONTEXT_ARM64_FULL_OLD (MD_CONTEXT_ARM64_INTEGER_OLD | \
MD_CONTEXT_ARM64_FLOATING_POINT_OLD)
#define MD_CONTEXT_ARM64_ALL_OLD (MD_CONTEXT_ARM64_INTEGER_OLD | \
MD_CONTEXT_ARM64_FLOATING_POINT_OLD)
#endif /* GOOGLE_BREAKPAD_COMMON_MINIDUMP_CPU_ARM64_H__ */
|