aboutsummaryrefslogtreecommitdiff
path: root/src/client/linux/handler/exception_handler.cc
blob: b895f6d7adac3336b82cf606dd429dc7ba3f021e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The ExceptionHandler object installs signal handlers for a number of
// signals. We rely on the signal handler running on the thread which crashed
// in order to identify it. This is true of the synchronous signals (SEGV etc),
// but not true of ABRT. Thus, if you send ABRT to yourself in a program which
// uses ExceptionHandler, you need to use tgkill to direct it to the current
// thread.
//
// The signal flow looks like this:
//
//   SignalHandler (uses a global stack of ExceptionHandler objects to find
//        |         one to handle the signal. If the first rejects it, try
//        |         the second etc...)
//        V
//   HandleSignal ----------------------------| (clones a new process which
//        |                                   |  shares an address space with
//   (wait for cloned                         |  the crashed process. This
//     process)                               |  allows us to ptrace the crashed
//        |                                   |  process)
//        V                                   V
//   (set signal handler to             ThreadEntry (static function to bounce
//    SIG_DFL and rethrow,                    |      back into the object)
//    killing the crashed                     |
//    process)                                V
//                                          DoDump  (writes minidump)
//                                            |
//                                            V
//                                         sys_exit
//

// This code is a little fragmented. Different functions of the ExceptionHandler
// class run in a number of different contexts. Some of them run in a normal
// context and are easy to code, others run in a compromised context and the
// restrictions at the top of minidump_writer.cc apply: no libc and use the
// alternative malloc. Each function should have comment above it detailing the
// context which it runs in.

#include "client/linux/handler/exception_handler.h"

#include <errno.h>
#include <fcntl.h>
#include <linux/limits.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>

#include <sys/signal.h>
#include <sys/ucontext.h>
#include <sys/user.h>
#include <ucontext.h>

#include <algorithm>
#include <utility>
#include <vector>

#include "common/basictypes.h"
#include "common/linux/linux_libc_support.h"
#include "common/memory_allocator.h"
#include "client/linux/log/log.h"
#include "client/linux/microdump_writer/microdump_writer.h"
#include "client/linux/minidump_writer/linux_dumper.h"
#include "client/linux/minidump_writer/minidump_writer.h"
#include "common/linux/eintr_wrapper.h"
#include "third_party/lss/linux_syscall_support.h"

#if defined(__ANDROID__)
#include "linux/sched.h"
#endif

#ifndef PR_SET_PTRACER
#define PR_SET_PTRACER 0x59616d61
#endif

namespace google_breakpad {

namespace {
// The list of signals which we consider to be crashes. The default action for
// all these signals must be Core (see man 7 signal) because we rethrow the
// signal after handling it and expect that it'll be fatal.
const int kExceptionSignals[] = {
  SIGSEGV, SIGABRT, SIGFPE, SIGILL, SIGBUS, SIGTRAP
};
const int kNumHandledSignals =
    sizeof(kExceptionSignals) / sizeof(kExceptionSignals[0]);
struct sigaction old_handlers[kNumHandledSignals];
bool handlers_installed = false;

// InstallAlternateStackLocked will store the newly installed stack in new_stack
// and (if it exists) the previously installed stack in old_stack.
stack_t old_stack;
stack_t new_stack;
bool stack_installed = false;

// Create an alternative stack to run the signal handlers on. This is done since
// the signal might have been caused by a stack overflow.
// Runs before crashing: normal context.
void InstallAlternateStackLocked() {
  if (stack_installed)
    return;

  memset(&old_stack, 0, sizeof(old_stack));
  memset(&new_stack, 0, sizeof(new_stack));

  // SIGSTKSZ may be too small to prevent the signal handlers from overrunning
  // the alternative stack. Ensure that the size of the alternative stack is
  // large enough.
  static const unsigned kSigStackSize = std::max(16384, SIGSTKSZ);

  // Only set an alternative stack if there isn't already one, or if the current
  // one is too small.
  if (sys_sigaltstack(NULL, &old_stack) == -1 || !old_stack.ss_sp ||
      old_stack.ss_size < kSigStackSize) {
    new_stack.ss_sp = calloc(1, kSigStackSize);
    new_stack.ss_size = kSigStackSize;

    if (sys_sigaltstack(&new_stack, NULL) == -1) {
      free(new_stack.ss_sp);
      return;
    }
    stack_installed = true;
  }
}

// Runs before crashing: normal context.
void RestoreAlternateStackLocked() {
  if (!stack_installed)
    return;

  stack_t current_stack;
  if (sys_sigaltstack(NULL, &current_stack) == -1)
    return;

  // Only restore the old_stack if the current alternative stack is the one
  // installed by the call to InstallAlternateStackLocked.
  if (current_stack.ss_sp == new_stack.ss_sp) {
    if (old_stack.ss_sp) {
      if (sys_sigaltstack(&old_stack, NULL) == -1)
        return;
    } else {
      stack_t disable_stack;
      disable_stack.ss_flags = SS_DISABLE;
      if (sys_sigaltstack(&disable_stack, NULL) == -1)
        return;
    }
  }

  free(new_stack.ss_sp);
  stack_installed = false;
}

void InstallDefaultHandler(int sig) {
#if defined(__ANDROID__)
  // Android L+ expose signal and sigaction symbols that override the system
  // ones. There is a bug in these functions where a request to set the handler
  // to SIG_DFL is ignored. In that case, an infinite loop is entered as the
  // signal is repeatedly sent to breakpad's signal handler.
  // To work around this, directly call the system's sigaction.
  struct kernel_sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sys_sigemptyset(&sa.sa_mask);
  sa.sa_handler_ = SIG_DFL;
  sa.sa_flags = SA_RESTART;
  sys_rt_sigaction(sig, &sa, NULL, sizeof(kernel_sigset_t));
#else
  signal(sig, SIG_DFL);
#endif
}

// The global exception handler stack. This is needed because there may exist
// multiple ExceptionHandler instances in a process. Each will have itself
// registered in this stack.
std::vector<ExceptionHandler*>* g_handler_stack_ = NULL;
pthread_mutex_t g_handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER;

// sizeof(CrashContext) can be too big w.r.t the size of alternatate stack
// for SignalHandler(). Keep the crash context as a .bss field. Exception
// handlers are serialized by the |g_handler_stack_mutex_| and at most one at a
// time can use |g_crash_context_|.
ExceptionHandler::CrashContext g_crash_context_;

FirstChanceHandler g_first_chance_handler_ = nullptr;
}  // namespace

// Runs before crashing: normal context.
ExceptionHandler::ExceptionHandler(const MinidumpDescriptor& descriptor,
                                   FilterCallback filter,
                                   MinidumpCallback callback,
                                   void* callback_context,
                                   bool install_handler,
                                   const int server_fd)
    : filter_(filter),
      callback_(callback),
      callback_context_(callback_context),
      minidump_descriptor_(descriptor),
      crash_handler_(NULL) {
  if (server_fd >= 0)
    crash_generation_client_.reset(CrashGenerationClient::TryCreate(server_fd));

  if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
      !minidump_descriptor_.IsMicrodumpOnConsole())
    minidump_descriptor_.UpdatePath();

#if defined(__ANDROID__)
  if (minidump_descriptor_.IsMicrodumpOnConsole())
    logger::initializeCrashLogWriter();
#endif

  pthread_mutex_lock(&g_handler_stack_mutex_);

  // Pre-fault the crash context struct. This is to avoid failing due to OOM
  // if handling an exception when the process ran out of virtual memory.
  memset(&g_crash_context_, 0, sizeof(g_crash_context_));

  if (!g_handler_stack_)
    g_handler_stack_ = new std::vector<ExceptionHandler*>;
  if (install_handler) {
    InstallAlternateStackLocked();
    InstallHandlersLocked();
  }
  g_handler_stack_->push_back(this);
  pthread_mutex_unlock(&g_handler_stack_mutex_);
}

// Runs before crashing: normal context.
ExceptionHandler::~ExceptionHandler() {
  pthread_mutex_lock(&g_handler_stack_mutex_);
  std::vector<ExceptionHandler*>::iterator handler =
      std::find(g_handler_stack_->begin(), g_handler_stack_->end(), this);
  g_handler_stack_->erase(handler);
  if (g_handler_stack_->empty()) {
    delete g_handler_stack_;
    g_handler_stack_ = NULL;
    RestoreAlternateStackLocked();
    RestoreHandlersLocked();
  }
  pthread_mutex_unlock(&g_handler_stack_mutex_);
}

// Runs before crashing: normal context.
// static
bool ExceptionHandler::InstallHandlersLocked() {
  if (handlers_installed)
    return false;

  // Fail if unable to store all the old handlers.
  for (int i = 0; i < kNumHandledSignals; ++i) {
    if (sigaction(kExceptionSignals[i], NULL, &old_handlers[i]) == -1)
      return false;
  }

  struct sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sigemptyset(&sa.sa_mask);

  // Mask all exception signals when we're handling one of them.
  for (int i = 0; i < kNumHandledSignals; ++i)
    sigaddset(&sa.sa_mask, kExceptionSignals[i]);

  sa.sa_sigaction = SignalHandler;
  sa.sa_flags = SA_ONSTACK | SA_SIGINFO;

  for (int i = 0; i < kNumHandledSignals; ++i) {
    if (sigaction(kExceptionSignals[i], &sa, NULL) == -1) {
      // At this point it is impractical to back out changes, and so failure to
      // install a signal is intentionally ignored.
    }
  }
  handlers_installed = true;
  return true;
}

// This function runs in a compromised context: see the top of the file.
// Runs on the crashing thread.
// static
void ExceptionHandler::RestoreHandlersLocked() {
  if (!handlers_installed)
    return;

  for (int i = 0; i < kNumHandledSignals; ++i) {
    if (sigaction(kExceptionSignals[i], &old_handlers[i], NULL) == -1) {
      InstallDefaultHandler(kExceptionSignals[i]);
    }
  }
  handlers_installed = false;
}

// void ExceptionHandler::set_crash_handler(HandlerCallback callback) {
//   crash_handler_ = callback;
// }

// This function runs in a compromised context: see the top of the file.
// Runs on the crashing thread.
// static
void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void* uc) {

  // Give the first chance handler a chance to recover from this signal
  //
  // This is primarily used by V8. V8 uses guard regions to guarantee memory
  // safety in WebAssembly. This means some signals might be expected if they
  // originate from Wasm code while accessing the guard region. We give V8 the
  // chance to handle and recover from these signals first.
  if (g_first_chance_handler_ != nullptr &&
      g_first_chance_handler_(sig, info, uc)) {
    return;
  }

  // All the exception signals are blocked at this point.
  pthread_mutex_lock(&g_handler_stack_mutex_);

  // Sometimes, Breakpad runs inside a process where some other buggy code
  // saves and restores signal handlers temporarily with 'signal'
  // instead of 'sigaction'. This loses the SA_SIGINFO flag associated
  // with this function. As a consequence, the values of 'info' and 'uc'
  // become totally bogus, generally inducing a crash.
  //
  // The following code tries to detect this case. When it does, it
  // resets the signal handlers with sigaction + SA_SIGINFO and returns.
  // This forces the signal to be thrown again, but this time the kernel
  // will call the function with the right arguments.
  struct sigaction cur_handler;
  if (sigaction(sig, NULL, &cur_handler) == 0 &&
      cur_handler.sa_sigaction == SignalHandler &&
      (cur_handler.sa_flags & SA_SIGINFO) == 0) {
    // Reset signal handler with the right flags.
    sigemptyset(&cur_handler.sa_mask);
    sigaddset(&cur_handler.sa_mask, sig);

    cur_handler.sa_sigaction = SignalHandler;
    cur_handler.sa_flags = SA_ONSTACK | SA_SIGINFO;

    if (sigaction(sig, &cur_handler, NULL) == -1) {
      // When resetting the handler fails, try to reset the
      // default one to avoid an infinite loop here.
      InstallDefaultHandler(sig);
    }
    pthread_mutex_unlock(&g_handler_stack_mutex_);
    return;
  }

  bool handled = false;
  for (int i = g_handler_stack_->size() - 1; !handled && i >= 0; --i) {
    handled = (*g_handler_stack_)[i]->HandleSignal(sig, info, uc);
  }

  // Upon returning from this signal handler, sig will become unmasked and then
  // it will be retriggered. If one of the ExceptionHandlers handled it
  // successfully, restore the default handler. Otherwise, restore the
  // previously installed handler. Then, when the signal is retriggered, it will
  // be delivered to the appropriate handler.
  if (handled) {
    InstallDefaultHandler(sig);
  } else {
    RestoreHandlersLocked();
  }

  pthread_mutex_unlock(&g_handler_stack_mutex_);

  // info->si_code <= 0 iff SI_FROMUSER (SI_FROMKERNEL otherwise).
  if (info->si_code <= 0 || sig == SIGABRT) {
    // This signal was triggered by somebody sending us the signal with kill().
    // In order to retrigger it, we have to queue a new signal by calling
    // kill() ourselves.  The special case (si_pid == 0 && sig == SIGABRT) is
    // due to the kernel sending a SIGABRT from a user request via SysRQ.
    if (sys_tgkill(getpid(), syscall(__NR_gettid), sig) < 0) {
      // If we failed to kill ourselves (e.g. because a sandbox disallows us
      // to do so), we instead resort to terminating our process. This will
      // result in an incorrect exit code.
      _exit(1);
    }
  } else {
    // This was a synchronous signal triggered by a hard fault (e.g. SIGSEGV).
    // No need to reissue the signal. It will automatically trigger again,
    // when we return from the signal handler.
  }
}

struct ThreadArgument {
  pid_t pid;  // the crashing process
  const MinidumpDescriptor* minidump_descriptor;
  ExceptionHandler* handler;
  const void* context;  // a CrashContext structure
  size_t context_size;
};

// This is the entry function for the cloned process. We are in a compromised
// context here: see the top of the file.
// static
int ExceptionHandler::ThreadEntry(void *arg) {
  const ThreadArgument *thread_arg = reinterpret_cast<ThreadArgument*>(arg);

  // Close the write end of the pipe. This allows us to fail if the parent dies
  // while waiting for the continue signal.
  sys_close(thread_arg->handler->fdes[1]);

  // Block here until the crashing process unblocks us when
  // we're allowed to use ptrace
  thread_arg->handler->WaitForContinueSignal();
  sys_close(thread_arg->handler->fdes[0]);

  return thread_arg->handler->DoDump(thread_arg->pid, thread_arg->context,
                                     thread_arg->context_size) == false;
}

// This function runs in a compromised context: see the top of the file.
// Runs on the crashing thread.
bool ExceptionHandler::HandleSignal(int /*sig*/, siginfo_t* info, void* uc) {
  if (filter_ && !filter_(callback_context_))
    return false;

  // Allow ourselves to be dumped if the signal is trusted.
  bool signal_trusted = info->si_code > 0;
  bool signal_pid_trusted = info->si_code == SI_USER ||
      info->si_code == SI_TKILL;
  if (signal_trusted || (signal_pid_trusted && info->si_pid == getpid())) {
    sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
  }

  // Fill in all the holes in the struct to make Valgrind happy.
  memset(&g_crash_context_, 0, sizeof(g_crash_context_));
  memcpy(&g_crash_context_.siginfo, info, sizeof(siginfo_t));
  memcpy(&g_crash_context_.context, uc, sizeof(ucontext_t));
#if defined(__aarch64__)
  ucontext_t* uc_ptr = (ucontext_t*)uc;
  struct fpsimd_context* fp_ptr =
      (struct fpsimd_context*)&uc_ptr->uc_mcontext.__reserved;
  if (fp_ptr->head.magic == FPSIMD_MAGIC) {
    memcpy(&g_crash_context_.float_state, fp_ptr,
           sizeof(g_crash_context_.float_state));
  }
#elif !defined(__ARM_EABI__) && !defined(__mips__)
  // FP state is not part of user ABI on ARM Linux.
  // In case of MIPS Linux FP state is already part of ucontext_t
  // and 'float_state' is not a member of CrashContext.
  ucontext_t* uc_ptr = (ucontext_t*)uc;
  if (uc_ptr->uc_mcontext.fpregs) {
    memcpy(&g_crash_context_.float_state, uc_ptr->uc_mcontext.fpregs,
           sizeof(g_crash_context_.float_state));
  }
#endif
  g_crash_context_.tid = syscall(__NR_gettid);
  if (crash_handler_ != NULL) {
    if (crash_handler_(&g_crash_context_, sizeof(g_crash_context_),
                       callback_context_)) {
      return true;
    }
  }
  return GenerateDump(&g_crash_context_);
}

// This is a public interface to HandleSignal that allows the client to
// generate a crash dump. This function may run in a compromised context.
bool ExceptionHandler::SimulateSignalDelivery(int sig) {
  siginfo_t siginfo = {};
  // Mimic a trusted signal to allow tracing the process (see
  // ExceptionHandler::HandleSignal().
  siginfo.si_code = SI_USER;
  siginfo.si_pid = getpid();
  ucontext_t context;
  getcontext(&context);
  return HandleSignal(sig, &siginfo, &context);
}

// This function may run in a compromised context: see the top of the file.
bool ExceptionHandler::GenerateDump(CrashContext *context) {
  if (IsOutOfProcess())
    return crash_generation_client_->RequestDump(context, sizeof(*context));

  // Allocating too much stack isn't a problem, and better to err on the side
  // of caution than smash it into random locations.
  static const unsigned kChildStackSize = 16000;
  PageAllocator allocator;
  uint8_t* stack = reinterpret_cast<uint8_t*>(allocator.Alloc(kChildStackSize));
  if (!stack)
    return false;
  // clone() needs the top-most address. (scrub just to be safe)
  stack += kChildStackSize;
  my_memset(stack - 16, 0, 16);

  ThreadArgument thread_arg;
  thread_arg.handler = this;
  thread_arg.minidump_descriptor = &minidump_descriptor_;
  thread_arg.pid = getpid();
  thread_arg.context = context;
  thread_arg.context_size = sizeof(*context);

  // We need to explicitly enable ptrace of parent processes on some
  // kernels, but we need to know the PID of the cloned process before we
  // can do this. Create a pipe here which we can use to block the
  // cloned process after creating it, until we have explicitly enabled ptrace
  if (sys_pipe(fdes) == -1) {
    // Creating the pipe failed. We'll log an error but carry on anyway,
    // as we'll probably still get a useful crash report. All that will happen
    // is the write() and read() calls will fail with EBADF
    static const char no_pipe_msg[] = "ExceptionHandler::GenerateDump "
                                      "sys_pipe failed:";
    logger::write(no_pipe_msg, sizeof(no_pipe_msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);

    // Ensure fdes[0] and fdes[1] are invalid file descriptors.
    fdes[0] = fdes[1] = -1;
  }

  const pid_t child = sys_clone(
      ThreadEntry, stack, CLONE_FS | CLONE_UNTRACED, &thread_arg, NULL, NULL,
      NULL);
  if (child == -1) {
    sys_close(fdes[0]);
    sys_close(fdes[1]);
    return false;
  }

  // Close the read end of the pipe.
  sys_close(fdes[0]);
  // Allow the child to ptrace us
  sys_prctl(PR_SET_PTRACER, child, 0, 0, 0);
  SendContinueSignalToChild();
  int status = 0;
  const int r = HANDLE_EINTR(sys_waitpid(child, &status, __WALL));

  sys_close(fdes[1]);

  if (r == -1) {
    static const char msg[] = "ExceptionHandler::GenerateDump waitpid failed:";
    logger::write(msg, sizeof(msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);
  }

  bool success = r != -1 && WIFEXITED(status) && WEXITSTATUS(status) == 0;
  if (callback_)
    success = callback_(minidump_descriptor_, callback_context_, success);
  return success;
}

// This function runs in a compromised context: see the top of the file.
void ExceptionHandler::SendContinueSignalToChild() {
  static const char okToContinueMessage = 'a';
  int r;
  r = HANDLE_EINTR(sys_write(fdes[1], &okToContinueMessage, sizeof(char)));
  if (r == -1) {
    static const char msg[] = "ExceptionHandler::SendContinueSignalToChild "
                              "sys_write failed:";
    logger::write(msg, sizeof(msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);
  }
}

// This function runs in a compromised context: see the top of the file.
// Runs on the cloned process.
void ExceptionHandler::WaitForContinueSignal() {
  int r;
  char receivedMessage;
  r = HANDLE_EINTR(sys_read(fdes[0], &receivedMessage, sizeof(char)));
  if (r == -1) {
    static const char msg[] = "ExceptionHandler::WaitForContinueSignal "
                              "sys_read failed:";
    logger::write(msg, sizeof(msg) - 1);
    logger::write(strerror(errno), strlen(strerror(errno)));
    logger::write("\n", 1);
  }
}

// This function runs in a compromised context: see the top of the file.
// Runs on the cloned process.
bool ExceptionHandler::DoDump(pid_t crashing_process, const void* context,
                              size_t context_size) {
  const bool may_skip_dump =
      minidump_descriptor_.skip_dump_if_principal_mapping_not_referenced();
  const uintptr_t principal_mapping_address =
      minidump_descriptor_.address_within_principal_mapping();
  const bool sanitize_stacks = minidump_descriptor_.sanitize_stacks();
  if (minidump_descriptor_.IsMicrodumpOnConsole()) {
    return google_breakpad::WriteMicrodump(
        crashing_process,
        context,
        context_size,
        mapping_list_,
        may_skip_dump,
        principal_mapping_address,
        sanitize_stacks,
        *minidump_descriptor_.microdump_extra_info());
  }
  if (minidump_descriptor_.IsFD()) {
    return google_breakpad::WriteMinidump(minidump_descriptor_.fd(),
                                          minidump_descriptor_.size_limit(),
                                          crashing_process,
                                          context,
                                          context_size,
                                          mapping_list_,
                                          app_memory_list_,
                                          may_skip_dump,
                                          principal_mapping_address,
                                          sanitize_stacks);
  }
  return google_breakpad::WriteMinidump(minidump_descriptor_.path(),
                                        minidump_descriptor_.size_limit(),
                                        crashing_process,
                                        context,
                                        context_size,
                                        mapping_list_,
                                        app_memory_list_,
                                        may_skip_dump,
                                        principal_mapping_address,
                                        sanitize_stacks);
}

// static
bool ExceptionHandler::WriteMinidump(const string& dump_path,
                                     MinidumpCallback callback,
                                     void* callback_context) {
  MinidumpDescriptor descriptor(dump_path);
  ExceptionHandler eh(descriptor, NULL, callback, callback_context, false, -1);
  return eh.WriteMinidump();
}

// In order to making using EBP to calculate the desired value for ESP
// a valid operation, ensure that this function is compiled with a
// frame pointer using the following attribute. This attribute
// is supported on GCC but not on clang.
#if defined(__i386__) && defined(__GNUC__) && !defined(__clang__)
__attribute__((optimize("no-omit-frame-pointer")))
#endif
bool ExceptionHandler::WriteMinidump() {
  if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
      !minidump_descriptor_.IsMicrodumpOnConsole()) {
    // Update the path of the minidump so that this can be called multiple times
    // and new files are created for each minidump.  This is done before the
    // generation happens, as clients may want to access the MinidumpDescriptor
    // after this call to find the exact path to the minidump file.
    minidump_descriptor_.UpdatePath();
  } else if (minidump_descriptor_.IsFD()) {
    // Reposition the FD to its beginning and resize it to get rid of the
    // previous minidump info.
    lseek(minidump_descriptor_.fd(), 0, SEEK_SET);
    ignore_result(ftruncate(minidump_descriptor_.fd(), 0));
  }

  // Allow this process to be dumped.
  sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);

  CrashContext context;
  int getcontext_result = getcontext(&context.context);
  if (getcontext_result)
    return false;

#if defined(__i386__)
  // In CPUFillFromUContext in minidumpwriter.cc the stack pointer is retrieved
  // from REG_UESP instead of from REG_ESP. REG_UESP is the user stack pointer
  // and it only makes sense when running in kernel mode with a different stack
  // pointer. When WriteMiniDump is called during normal processing REG_UESP is
  // zero which leads to bad minidump files.
  if (!context.context.uc_mcontext.gregs[REG_UESP]) {
    // If REG_UESP is set to REG_ESP then that includes the stack space for the
    // CrashContext object in this function, which is about 128 KB. Since the
    // Linux dumper only records 32 KB of stack this would mean that nothing
    // useful would be recorded. A better option is to set REG_UESP to REG_EBP,
    // perhaps with a small negative offset in case there is any code that
    // objects to them being equal.
    context.context.uc_mcontext.gregs[REG_UESP] =
      context.context.uc_mcontext.gregs[REG_EBP] - 16;
    // The stack saving is based off of REG_ESP so it must be set to match the
    // new REG_UESP.
    context.context.uc_mcontext.gregs[REG_ESP] =
      context.context.uc_mcontext.gregs[REG_UESP];
  }
#endif

#if !defined(__ARM_EABI__) && !defined(__aarch64__) && !defined(__mips__)
  // FPU state is not part of ARM EABI ucontext_t.
  memcpy(&context.float_state, context.context.uc_mcontext.fpregs,
         sizeof(context.float_state));
#endif
  context.tid = sys_gettid();

  // Add an exception stream to the minidump for better reporting.
  memset(&context.siginfo, 0, sizeof(context.siginfo));
  context.siginfo.si_signo = MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED;
#if defined(__i386__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_EIP]);
#elif defined(__x86_64__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_RIP]);
#elif defined(__arm__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.arm_pc);
#elif defined(__aarch64__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.pc);
#elif defined(__mips__)
  context.siginfo.si_addr =
      reinterpret_cast<void*>(context.context.uc_mcontext.pc);
#else
#error "This code has not been ported to your platform yet."
#endif

  return GenerateDump(&context);
}

void ExceptionHandler::AddMappingInfo(const string& name,
                                      const uint8_t identifier[sizeof(MDGUID)],
                                      uintptr_t start_address,
                                      size_t mapping_size,
                                      size_t file_offset) {
  MappingInfo info;
  info.start_addr = start_address;
  info.size = mapping_size;
  info.offset = file_offset;
  strncpy(info.name, name.c_str(), sizeof(info.name) - 1);
  info.name[sizeof(info.name) - 1] = '\0';

  MappingEntry mapping;
  mapping.first = info;
  memcpy(mapping.second, identifier, sizeof(MDGUID));
  mapping_list_.push_back(mapping);
}

void ExceptionHandler::RegisterAppMemory(void* ptr, size_t length) {
  AppMemoryList::iterator iter =
    std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
  if (iter != app_memory_list_.end()) {
    // Don't allow registering the same pointer twice.
    return;
  }

  AppMemory app_memory;
  app_memory.ptr = ptr;
  app_memory.length = length;
  app_memory_list_.push_back(app_memory);
}

void ExceptionHandler::UnregisterAppMemory(void* ptr) {
  AppMemoryList::iterator iter =
    std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
  if (iter != app_memory_list_.end()) {
    app_memory_list_.erase(iter);
  }
}

// static
bool ExceptionHandler::WriteMinidumpForChild(pid_t child,
                                             pid_t child_blamed_thread,
                                             const string& dump_path,
                                             MinidumpCallback callback,
                                             void* callback_context) {
  // This function is not run in a compromised context.
  MinidumpDescriptor descriptor(dump_path);
  descriptor.UpdatePath();
  if (!google_breakpad::WriteMinidump(descriptor.path(),
                                      child,
                                      child_blamed_thread))
      return false;

  return callback ? callback(descriptor, callback_context, true) : true;
}

void SetFirstChanceExceptionHandler(FirstChanceHandler callback) {
  g_first_chance_handler_ = callback;
}

}  // namespace google_breakpad