aboutsummaryrefslogtreecommitdiff
path: root/src/client/linux/minidump_writer/linux_dumper.cc
blob: 43b74ad9de7e4e536e4622aaa21d24705af5a9e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// linux_dumper.cc: Implement google_breakpad::LinuxDumper.
// See linux_dumper.h for details.

// This code deals with the mechanics of getting information about a crashed
// process. Since this code may run in a compromised address space, the same
// rules apply as detailed at the top of minidump_writer.h: no libc calls and
// use the alternative allocator.

#include "client/linux/minidump_writer/linux_dumper.h"

#include <assert.h>
#include <elf.h>
#include <fcntl.h>
#include <limits.h>
#include <stddef.h>
#include <string.h>

#include "client/linux/minidump_writer/line_reader.h"
#include "common/linux/elfutils.h"
#include "common/linux/file_id.h"
#include "common/linux/linux_libc_support.h"
#include "common/linux/memory_mapped_file.h"
#include "common/linux/safe_readlink.h"
#include "third_party/lss/linux_syscall_support.h"

#if defined(__ANDROID__)

// Android packed relocations definitions are not yet available from the
// NDK header files, so we have to provide them manually here.
#ifndef DT_LOOS
#define DT_LOOS 0x6000000d
#endif
#ifndef DT_ANDROID_REL
static const int DT_ANDROID_REL = DT_LOOS + 2;
#endif
#ifndef DT_ANDROID_RELA
static const int DT_ANDROID_RELA = DT_LOOS + 4;
#endif

#endif  // __ANDROID __

static const char kMappedFileUnsafePrefix[] = "/dev/";
static const char kDeletedSuffix[] = " (deleted)";
static const char kReservedFlags[] = " ---p";

inline static bool IsMappedFileOpenUnsafe(
    const google_breakpad::MappingInfo& mapping) {
  // It is unsafe to attempt to open a mapped file that lives under /dev,
  // because the semantics of the open may be driver-specific so we'd risk
  // hanging the crash dumper. And a file in /dev/ almost certainly has no
  // ELF file identifier anyways.
  return my_strncmp(mapping.name,
                    kMappedFileUnsafePrefix,
                    sizeof(kMappedFileUnsafePrefix) - 1) == 0;
}

namespace google_breakpad {

// All interesting auvx entry types are below AT_SYSINFO_EHDR
#define AT_MAX AT_SYSINFO_EHDR

LinuxDumper::LinuxDumper(pid_t pid)
    : pid_(pid),
      crash_address_(0),
      crash_signal_(0),
      crash_thread_(pid),
      threads_(&allocator_, 8),
      mappings_(&allocator_),
      auxv_(&allocator_, AT_MAX + 1) {
  // The passed-in size to the constructor (above) is only a hint.
  // Must call .resize() to do actual initialization of the elements.
  auxv_.resize(AT_MAX + 1);
}

LinuxDumper::~LinuxDumper() {
}

bool LinuxDumper::Init() {
  return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
}

bool LinuxDumper::LateInit() {
#if defined(__ANDROID__)
  LatePostprocessMappings();
#endif
  return true;
}

bool
LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
                                         bool member,
                                         unsigned int mapping_id,
                                         uint8_t identifier[sizeof(MDGUID)]) {
  assert(!member || mapping_id < mappings_.size());
  my_memset(identifier, 0, sizeof(MDGUID));
  if (IsMappedFileOpenUnsafe(mapping))
    return false;

  // Special-case linux-gate because it's not a real file.
  if (my_strcmp(mapping.name, kLinuxGateLibraryName) == 0) {
    void* linux_gate = NULL;
    if (pid_ == sys_getpid()) {
      linux_gate = reinterpret_cast<void*>(mapping.start_addr);
    } else {
      linux_gate = allocator_.Alloc(mapping.size);
      CopyFromProcess(linux_gate, pid_,
                      reinterpret_cast<const void*>(mapping.start_addr),
                      mapping.size);
    }
    return FileID::ElfFileIdentifierFromMappedFile(linux_gate, identifier);
  }

  char filename[NAME_MAX];
  size_t filename_len = my_strlen(mapping.name);
  if (filename_len >= NAME_MAX) {
    assert(false);
    return false;
  }
  my_memcpy(filename, mapping.name, filename_len);
  filename[filename_len] = '\0';
  bool filename_modified = HandleDeletedFileInMapping(filename);

  MemoryMappedFile mapped_file(filename, mapping.offset);
  if (!mapped_file.data() || mapped_file.size() < SELFMAG)
    return false;

  bool success =
      FileID::ElfFileIdentifierFromMappedFile(mapped_file.data(), identifier);
  if (success && member && filename_modified) {
    mappings_[mapping_id]->name[filename_len -
                                sizeof(kDeletedSuffix) + 1] = '\0';
  }

  return success;
}

namespace {
bool ElfFileSoNameFromMappedFile(
    const void* elf_base, char* soname, size_t soname_size) {
  if (!IsValidElf(elf_base)) {
    // Not ELF
    return false;
  }

  const void* segment_start;
  size_t segment_size;
  int elf_class;
  if (!FindElfSection(elf_base, ".dynamic", SHT_DYNAMIC,
                      &segment_start, &segment_size, &elf_class)) {
    // No dynamic section
    return false;
  }

  const void* dynstr_start;
  size_t dynstr_size;
  if (!FindElfSection(elf_base, ".dynstr", SHT_STRTAB,
                      &dynstr_start, &dynstr_size, &elf_class)) {
    // No dynstr section
    return false;
  }

  const ElfW(Dyn)* dynamic = static_cast<const ElfW(Dyn)*>(segment_start);
  size_t dcount = segment_size / sizeof(ElfW(Dyn));
  for (const ElfW(Dyn)* dyn = dynamic; dyn < dynamic + dcount; ++dyn) {
    if (dyn->d_tag == DT_SONAME) {
      const char* dynstr = static_cast<const char*>(dynstr_start);
      if (dyn->d_un.d_val >= dynstr_size) {
        // Beyond the end of the dynstr section
        return false;
      }
      const char* str = dynstr + dyn->d_un.d_val;
      const size_t maxsize = dynstr_size - dyn->d_un.d_val;
      my_strlcpy(soname, str, maxsize < soname_size ? maxsize : soname_size);
      return true;
    }
  }

  // Did not find SONAME
  return false;
}

// Find the shared object name (SONAME) by examining the ELF information
// for |mapping|. If the SONAME is found copy it into the passed buffer
// |soname| and return true. The size of the buffer is |soname_size|.
// The SONAME will be truncated if it is too long to fit in the buffer.
bool ElfFileSoName(
    const MappingInfo& mapping, char* soname, size_t soname_size) {
  if (IsMappedFileOpenUnsafe(mapping)) {
    // Not safe
    return false;
  }

  char filename[NAME_MAX];
  size_t filename_len = my_strlen(mapping.name);
  if (filename_len >= NAME_MAX) {
    assert(false);
    // name too long
    return false;
  }

  my_memcpy(filename, mapping.name, filename_len);
  filename[filename_len] = '\0';

  MemoryMappedFile mapped_file(filename, mapping.offset);
  if (!mapped_file.data() || mapped_file.size() < SELFMAG) {
    // mmap failed
    return false;
  }

  return ElfFileSoNameFromMappedFile(mapped_file.data(), soname, soname_size);
}

}  // namespace


// static
void LinuxDumper::GetMappingEffectiveNameAndPath(const MappingInfo& mapping,
                                                 char* file_path,
                                                 size_t file_path_size,
                                                 char* file_name,
                                                 size_t file_name_size) {
  my_strlcpy(file_path, mapping.name, file_path_size);

  // If an executable is mapped from a non-zero offset, this is likely because
  // the executable was loaded directly from inside an archive file (e.g., an
  // apk on Android). We try to find the name of the shared object (SONAME) by
  // looking in the file for ELF sections.
  bool mapped_from_archive = false;
  if (mapping.exec && mapping.offset != 0)
    mapped_from_archive = ElfFileSoName(mapping, file_name, file_name_size);

  if (mapped_from_archive) {
    // Some tools (e.g., stackwalk) extract the basename from the pathname. In
    // this case, we append the file_name to the mapped archive path as follows:
    //   file_name := libname.so
    //   file_path := /path/to/ARCHIVE.APK/libname.so
    if (my_strlen(file_path) + 1 + my_strlen(file_name) < file_path_size) {
      my_strlcat(file_path, "/", file_path_size);
      my_strlcat(file_path, file_name, file_path_size);
    }
  } else {
    // Common case:
    //   file_path := /path/to/libname.so
    //   file_name := libname.so
    const char* basename = my_strrchr(file_path, '/');
    basename = basename == NULL ? file_path : (basename + 1);
    my_strlcpy(file_name, basename, file_name_size);
  }
}

bool LinuxDumper::ReadAuxv() {
  char auxv_path[NAME_MAX];
  if (!BuildProcPath(auxv_path, pid_, "auxv")) {
    return false;
  }

  int fd = sys_open(auxv_path, O_RDONLY, 0);
  if (fd < 0) {
    return false;
  }

  elf_aux_entry one_aux_entry;
  bool res = false;
  while (sys_read(fd,
                  &one_aux_entry,
                  sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
         one_aux_entry.a_type != AT_NULL) {
    if (one_aux_entry.a_type <= AT_MAX) {
      auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
      res = true;
    }
  }
  sys_close(fd);
  return res;
}

bool LinuxDumper::EnumerateMappings() {
  char maps_path[NAME_MAX];
  if (!BuildProcPath(maps_path, pid_, "maps"))
    return false;

  // linux_gate_loc is the beginning of the kernel's mapping of
  // linux-gate.so in the process.  It doesn't actually show up in the
  // maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
  // aux vector entry, which gives the information necessary to special
  // case its entry when creating the list of mappings.
  // See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
  // information.
  const void* linux_gate_loc =
      reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
  // Although the initial executable is usually the first mapping, it's not
  // guaranteed (see http://crosbug.com/25355); therefore, try to use the
  // actual entry point to find the mapping.
  const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);

  const int fd = sys_open(maps_path, O_RDONLY, 0);
  if (fd < 0)
    return false;
  LineReader* const line_reader = new(allocator_) LineReader(fd);

  const char* line;
  unsigned line_len;
  while (line_reader->GetNextLine(&line, &line_len)) {
    uintptr_t start_addr, end_addr, offset;

    const char* i1 = my_read_hex_ptr(&start_addr, line);
    if (*i1 == '-') {
      const char* i2 = my_read_hex_ptr(&end_addr, i1 + 1);
      if (*i2 == ' ') {
        bool exec = (*(i2 + 3) == 'x');
        const char* i3 = my_read_hex_ptr(&offset, i2 + 6 /* skip ' rwxp ' */);
        if (*i3 == ' ') {
          const char* name = NULL;
          // Only copy name if the name is a valid path name, or if
          // it's the VDSO image.
          if (((name = my_strchr(line, '/')) == NULL) &&
              linux_gate_loc &&
              reinterpret_cast<void*>(start_addr) == linux_gate_loc) {
            name = kLinuxGateLibraryName;
            offset = 0;
          }
          // Merge adjacent mappings with the same name into one module,
          // assuming they're a single library mapped by the dynamic linker
          if (name && !mappings_.empty()) {
            MappingInfo* module = mappings_.back();
            if ((start_addr == module->start_addr + module->size) &&
                (my_strlen(name) == my_strlen(module->name)) &&
                (my_strncmp(name, module->name, my_strlen(name)) == 0)) {
              module->size = end_addr - module->start_addr;
              line_reader->PopLine(line_len);
              continue;
            }
          }
          // Also merge mappings that result from address ranges that the
          // linker reserved but which a loaded library did not use. These
          // appear as an anonymous private mapping with no access flags set
          // and which directly follow an executable mapping.
          if (!name && !mappings_.empty()) {
            MappingInfo* module = mappings_.back();
            if ((start_addr == module->start_addr + module->size) &&
                module->exec &&
                module->name[0] == '/' &&
                offset == 0 && my_strncmp(i2,
                                          kReservedFlags,
                                          sizeof(kReservedFlags) - 1) == 0) {
              module->size = end_addr - module->start_addr;
              line_reader->PopLine(line_len);
              continue;
            }
          }
          MappingInfo* const module = new(allocator_) MappingInfo;
          my_memset(module, 0, sizeof(MappingInfo));
          module->start_addr = start_addr;
          module->size = end_addr - start_addr;
          module->offset = offset;
          module->exec = exec;
          if (name != NULL) {
            const unsigned l = my_strlen(name);
            if (l < sizeof(module->name))
              my_memcpy(module->name, name, l);
          }
          // If this is the entry-point mapping, and it's not already the
          // first one, then we need to make it be first.  This is because
          // the minidump format assumes the first module is the one that
          // corresponds to the main executable (as codified in
          // processor/minidump.cc:MinidumpModuleList::GetMainModule()).
          if (entry_point_loc &&
              (entry_point_loc >=
                  reinterpret_cast<void*>(module->start_addr)) &&
              (entry_point_loc <
                  reinterpret_cast<void*>(module->start_addr+module->size)) &&
              !mappings_.empty()) {
            // push the module onto the front of the list.
            mappings_.resize(mappings_.size() + 1);
            for (size_t idx = mappings_.size() - 1; idx > 0; idx--)
              mappings_[idx] = mappings_[idx - 1];
            mappings_[0] = module;
          } else {
            mappings_.push_back(module);
          }
        }
      }
    }
    line_reader->PopLine(line_len);
  }

  sys_close(fd);

  return !mappings_.empty();
}

#if defined(__ANDROID__)

bool LinuxDumper::GetLoadedElfHeader(uintptr_t start_addr, ElfW(Ehdr)* ehdr) {
  CopyFromProcess(ehdr, pid_,
                  reinterpret_cast<const void*>(start_addr),
                  sizeof(*ehdr));
  return my_memcmp(&ehdr->e_ident, ELFMAG, SELFMAG) == 0;
}

void LinuxDumper::ParseLoadedElfProgramHeaders(ElfW(Ehdr)* ehdr,
                                               uintptr_t start_addr,
                                               uintptr_t* min_vaddr_ptr,
                                               uintptr_t* dyn_vaddr_ptr,
                                               size_t* dyn_count_ptr) {
  uintptr_t phdr_addr = start_addr + ehdr->e_phoff;

  const uintptr_t max_addr = UINTPTR_MAX;
  uintptr_t min_vaddr = max_addr;
  uintptr_t dyn_vaddr = 0;
  size_t dyn_count = 0;

  for (size_t i = 0; i < ehdr->e_phnum; ++i) {
    ElfW(Phdr) phdr;
    CopyFromProcess(&phdr, pid_,
                    reinterpret_cast<const void*>(phdr_addr),
                    sizeof(phdr));
    if (phdr.p_type == PT_LOAD && phdr.p_vaddr < min_vaddr) {
      min_vaddr = phdr.p_vaddr;
    }
    if (phdr.p_type == PT_DYNAMIC) {
      dyn_vaddr = phdr.p_vaddr;
      dyn_count = phdr.p_memsz / sizeof(ElfW(Dyn));
    }
    phdr_addr += sizeof(phdr);
  }

  *min_vaddr_ptr = min_vaddr;
  *dyn_vaddr_ptr = dyn_vaddr;
  *dyn_count_ptr = dyn_count;
}

bool LinuxDumper::HasAndroidPackedRelocations(uintptr_t load_bias,
                                              uintptr_t dyn_vaddr,
                                              size_t dyn_count) {
  uintptr_t dyn_addr = load_bias + dyn_vaddr;
  for (size_t i = 0; i < dyn_count; ++i) {
    ElfW(Dyn) dyn;
    CopyFromProcess(&dyn, pid_,
                    reinterpret_cast<const void*>(dyn_addr),
                    sizeof(dyn));
    if (dyn.d_tag == DT_ANDROID_REL || dyn.d_tag == DT_ANDROID_RELA) {
      return true;
    }
    dyn_addr += sizeof(dyn);
  }
  return false;
}

uintptr_t LinuxDumper::GetEffectiveLoadBias(ElfW(Ehdr)* ehdr,
                                            uintptr_t start_addr) {
  uintptr_t min_vaddr = 0;
  uintptr_t dyn_vaddr = 0;
  size_t dyn_count = 0;
  ParseLoadedElfProgramHeaders(ehdr, start_addr,
                               &min_vaddr, &dyn_vaddr, &dyn_count);
  // If |min_vaddr| is non-zero and we find Android packed relocation tags,
  // return the effective load bias.
  if (min_vaddr != 0) {
    const uintptr_t load_bias = start_addr - min_vaddr;
    if (HasAndroidPackedRelocations(load_bias, dyn_vaddr, dyn_count)) {
      return load_bias;
    }
  }
  // Either |min_vaddr| is zero, or it is non-zero but we did not find the
  // expected Android packed relocations tags.
  return start_addr;
}

void LinuxDumper::LatePostprocessMappings() {
  for (size_t i = 0; i < mappings_.size(); ++i) {
    // Only consider exec mappings that indicate a file path was mapped, and
    // where the ELF header indicates a mapped shared library.
    MappingInfo* mapping = mappings_[i];
    if (!(mapping->exec && mapping->name[0] == '/')) {
      continue;
    }
    ElfW(Ehdr) ehdr;
    if (!GetLoadedElfHeader(mapping->start_addr, &ehdr)) {
      continue;
    }
    if (ehdr.e_type == ET_DYN) {
      // Compute the effective load bias for this mapped library, and update
      // the mapping to hold that rather than |start_addr|, at the same time
      // adjusting |size| to account for the change in |start_addr|. Where
      // the library does not contain Android packed relocations,
      // GetEffectiveLoadBias() returns |start_addr| and the mapping entry
      // is not changed.
      const uintptr_t load_bias = GetEffectiveLoadBias(&ehdr,
                                                       mapping->start_addr);
      mapping->size += mapping->start_addr - load_bias;
      mapping->start_addr = load_bias;
    }
  }
}

#endif  // __ANDROID__

// Get information about the stack, given the stack pointer. We don't try to
// walk the stack since we might not have all the information needed to do
// unwind. So we just grab, up to, 32k of stack.
bool LinuxDumper::GetStackInfo(const void** stack, size_t* stack_len,
                               uintptr_t int_stack_pointer) {
  // Move the stack pointer to the bottom of the page that it's in.
  const uintptr_t page_size = getpagesize();

  uint8_t* const stack_pointer =
      reinterpret_cast<uint8_t*>(int_stack_pointer & ~(page_size - 1));

  // The number of bytes of stack which we try to capture.
  static const ptrdiff_t kStackToCapture = 32 * 1024;

  const MappingInfo* mapping = FindMapping(stack_pointer);
  if (!mapping)
    return false;
  const ptrdiff_t offset = stack_pointer -
      reinterpret_cast<uint8_t*>(mapping->start_addr);
  const ptrdiff_t distance_to_end =
      static_cast<ptrdiff_t>(mapping->size) - offset;
  *stack_len = distance_to_end > kStackToCapture ?
      kStackToCapture : distance_to_end;
  *stack = stack_pointer;
  return true;
}

// Find the mapping which the given memory address falls in.
const MappingInfo* LinuxDumper::FindMapping(const void* address) const {
  const uintptr_t addr = (uintptr_t) address;

  for (size_t i = 0; i < mappings_.size(); ++i) {
    const uintptr_t start = static_cast<uintptr_t>(mappings_[i]->start_addr);
    if (addr >= start && addr - start < mappings_[i]->size)
      return mappings_[i];
  }

  return NULL;
}

bool LinuxDumper::HandleDeletedFileInMapping(char* path) const {
  static const size_t kDeletedSuffixLen = sizeof(kDeletedSuffix) - 1;

  // Check for ' (deleted)' in |path|.
  // |path| has to be at least as long as "/x (deleted)".
  const size_t path_len = my_strlen(path);
  if (path_len < kDeletedSuffixLen + 2)
    return false;
  if (my_strncmp(path + path_len - kDeletedSuffixLen, kDeletedSuffix,
                 kDeletedSuffixLen) != 0) {
    return false;
  }

  // Check |path| against the /proc/pid/exe 'symlink'.
  char exe_link[NAME_MAX];
  char new_path[NAME_MAX];
  if (!BuildProcPath(exe_link, pid_, "exe"))
    return false;
  if (!SafeReadLink(exe_link, new_path))
    return false;
  if (my_strcmp(path, new_path) != 0)
    return false;

  // Check to see if someone actually named their executable 'foo (deleted)'.
  struct kernel_stat exe_stat;
  struct kernel_stat new_path_stat;
  if (sys_stat(exe_link, &exe_stat) == 0 &&
      sys_stat(new_path, &new_path_stat) == 0 &&
      exe_stat.st_dev == new_path_stat.st_dev &&
      exe_stat.st_ino == new_path_stat.st_ino) {
    return false;
  }

  my_memcpy(path, exe_link, NAME_MAX);
  return true;
}

}  // namespace google_breakpad