aboutsummaryrefslogtreecommitdiff
path: root/src/client/linux/minidump_writer/linux_dumper.cc
blob: 141aa07ce390779c3c30004a63f01111b7bdf140 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// linux_dumper.cc: Implement google_breakpad::LinuxDumper.
// See linux_dumper.h for details.

// This code deals with the mechanics of getting information about a crashed
// process. Since this code may run in a compromised address space, the same
// rules apply as detailed at the top of minidump_writer.h: no libc calls and
// use the alternative allocator.

#include "client/linux/minidump_writer/linux_dumper.h"

#include <assert.h>
#include <elf.h>
#include <fcntl.h>
#include <limits.h>
#include <stddef.h>
#include <string.h>

#include "client/linux/minidump_writer/line_reader.h"
#include "common/linux/elfutils.h"
#include "common/linux/file_id.h"
#include "common/linux/linux_libc_support.h"
#include "common/linux/memory_mapped_file.h"
#include "common/linux/safe_readlink.h"
#include "third_party/lss/linux_syscall_support.h"

#if defined(__ANDROID__)

// Android packed relocations definitions are not yet available from the
// NDK header files, so we have to provide them manually here.
#ifndef DT_LOOS
#define DT_LOOS 0x6000000d
#endif
#ifndef DT_ANDROID_REL
static const int DT_ANDROID_REL = DT_LOOS + 2;
#endif
#ifndef DT_ANDROID_RELA
static const int DT_ANDROID_RELA = DT_LOOS + 4;
#endif

#endif  // __ANDROID __

static const char kMappedFileUnsafePrefix[] = "/dev/";
static const char kDeletedSuffix[] = " (deleted)";

inline static bool IsMappedFileOpenUnsafe(
    const google_breakpad::MappingInfo& mapping) {
  // It is unsafe to attempt to open a mapped file that lives under /dev,
  // because the semantics of the open may be driver-specific so we'd risk
  // hanging the crash dumper. And a file in /dev/ almost certainly has no
  // ELF file identifier anyways.
  return my_strncmp(mapping.name,
                    kMappedFileUnsafePrefix,
                    sizeof(kMappedFileUnsafePrefix) - 1) == 0;
}

namespace google_breakpad {

namespace {

bool MappingContainsAddress(const MappingInfo& mapping, uintptr_t address) {
  return mapping.system_mapping_info.start_addr <= address &&
         address < mapping.system_mapping_info.end_addr;
}

#if defined(__CHROMEOS__)

// Recover memory mappings before writing dump on ChromeOS
//
// On Linux, breakpad relies on /proc/[pid]/maps to associate symbols from
// addresses. ChromeOS' hugepage implementation replaces some segments with
// anonymous private pages, which is a restriction of current implementation
// in Linux kernel at the time of writing. Thus, breakpad can no longer
// symbolize addresses from those text segments replaced with hugepages.
//
// This postprocess tries to recover the mappings. Because hugepages are always
// inserted in between some .text sections, it tries to infer the names and
// offsets of the segments, by looking at segments immediately precede and
// succeed them.
//
// For example, a text segment before hugepage optimization
//   02001000-03002000 r-xp /opt/google/chrome/chrome
//
// can be broken into
//   02001000-02200000 r-xp /opt/google/chrome/chrome
//   02200000-03000000 r-xp
//   03000000-03002000 r-xp /opt/google/chrome/chrome
//
// For more details, see:
// crbug.com/628040 ChromeOS' use of hugepages confuses crash symbolization

// Copied from CrOS' hugepage implementation, which is unlikely to change.
// The hugepage size is 2M.
const unsigned int kHpageShift = 21;
const size_t kHpageSize = (1 << kHpageShift);
const size_t kHpageMask = (~(kHpageSize - 1));

// Find and merge anonymous r-xp segments with surrounding named segments.
// There are two cases:

// Case 1: curr, next
//   curr is anonymous
//   curr is r-xp
//   curr.size >= 2M
//   curr.size is a multiple of 2M.
//   next is backed by some file.
//   curr and next are contiguous.
//   offset(next) == sizeof(curr)
void TryRecoverMappings(MappingInfo *curr, MappingInfo *next) {
  // Merged segments are marked with size = 0.
  if (curr->size == 0 || next->size == 0)
    return;

  if (curr->size >= kHpageSize &&
      curr->exec &&
      (curr->size & kHpageMask) == curr->size &&
      (curr->start_addr & kHpageMask) == curr->start_addr &&
      curr->name[0] == '\0' &&
      next->name[0] != '\0' &&
      curr->start_addr + curr->size == next->start_addr &&
      curr->size == next->offset) {

    // matched
    my_strlcpy(curr->name, next->name, NAME_MAX);
    if (next->exec) {
      // (curr, next)
      curr->size += next->size;
      next->size = 0;
    }
  }
}

// Case 2: prev, curr, next
//   curr is anonymous
//   curr is r-xp
//   curr.size >= 2M
//   curr.size is a multiple of 2M.
//   next and prev are backed by the same file.
//   prev, curr and next are contiguous.
//   offset(next) == offset(prev) + sizeof(prev) + sizeof(curr)
void TryRecoverMappings(MappingInfo *prev, MappingInfo *curr,
    MappingInfo *next) {
  // Merged segments are marked with size = 0.
  if (prev->size == 0 || curr->size == 0 || next->size == 0)
    return;

  if (curr->size >= kHpageSize &&
      curr->exec &&
      (curr->size & kHpageMask) == curr->size &&
      (curr->start_addr & kHpageMask) == curr->start_addr &&
      curr->name[0] == '\0' &&
      next->name[0] != '\0' &&
      curr->start_addr + curr->size == next->start_addr &&
      prev->start_addr + prev->size == curr->start_addr &&
      my_strncmp(prev->name, next->name, NAME_MAX) == 0 &&
      next->offset == prev->offset + prev->size + curr->size) {

    // matched
    my_strlcpy(curr->name, prev->name, NAME_MAX);
    if (prev->exec) {
      curr->offset = prev->offset;
      curr->start_addr = prev->start_addr;
      if (next->exec) {
        // (prev, curr, next)
        curr->size += prev->size + next->size;
        prev->size = 0;
        next->size = 0;
      } else {
        // (prev, curr), next
        curr->size += prev->size;
        prev->size = 0;
      }
    } else {
      curr->offset = prev->offset + prev->size;
      if (next->exec) {
        // prev, (curr, next)
        curr->size += next->size;
        next->size = 0;
      } else {
        // prev, curr, next
      }
    }
  }
}

// mappings_ is sorted excepted for the first entry.
// This function tries to merge segemnts into the first entry,
// then check for other sorted entries.
// See LinuxDumper::EnumerateMappings().
void CrOSPostProcessMappings(wasteful_vector<MappingInfo*>& mappings) {
  // Find the candidate "next" to first segment, which is the only one that
  // could be out-of-order.
  size_t l = 1;
  size_t r = mappings.size();
  size_t next = mappings.size();
  while (l < r) {
    int m = (l + r) / 2;
    if (mappings[m]->start_addr > mappings[0]->start_addr)
      r = next = m;
    else
      l = m + 1;
  }

  // Try to merge segments into the first.
  if (next < mappings.size()) {
    TryRecoverMappings(mappings[0], mappings[next]);
    if (next - 1 > 0)
      TryRecoverMappings(mappings[next - 1], mappings[0], mappings[next]);
  }

  // Iterate through normal, sorted cases.
  // Normal case 1.
  for (size_t i = 1; i < mappings.size() - 1; i++)
    TryRecoverMappings(mappings[i], mappings[i + 1]);

  // Normal case 2.
  for (size_t i = 1; i < mappings.size() - 2; i++)
    TryRecoverMappings(mappings[i], mappings[i + 1], mappings[i + 2]);

  // Collect merged (size == 0) segments.
  size_t f, e;
  for (f = e = 0; e < mappings.size(); e++)
    if (mappings[e]->size > 0)
      mappings[f++] = mappings[e];
  mappings.resize(f);
}

#endif  // __CHROMEOS__

}  // namespace

// All interesting auvx entry types are below AT_SYSINFO_EHDR
#define AT_MAX AT_SYSINFO_EHDR

LinuxDumper::LinuxDumper(pid_t pid, const char* root_prefix)
    : pid_(pid),
      root_prefix_(root_prefix),
      crash_address_(0),
      crash_signal_(0),
      crash_thread_(pid),
      threads_(&allocator_, 8),
      mappings_(&allocator_),
      auxv_(&allocator_, AT_MAX + 1) {
  assert(root_prefix_ && my_strlen(root_prefix_) < PATH_MAX);
  // The passed-in size to the constructor (above) is only a hint.
  // Must call .resize() to do actual initialization of the elements.
  auxv_.resize(AT_MAX + 1);
}

LinuxDumper::~LinuxDumper() {
}

bool LinuxDumper::Init() {
  return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
}

bool LinuxDumper::LateInit() {
#if defined(__ANDROID__)
  LatePostprocessMappings();
#endif

#if defined(__CHROMEOS__)
  CrOSPostProcessMappings(mappings_);
#endif

  return true;
}

bool
LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
                                         bool member,
                                         unsigned int mapping_id,
                                         wasteful_vector<uint8_t>& identifier) {
  assert(!member || mapping_id < mappings_.size());
  if (IsMappedFileOpenUnsafe(mapping))
    return false;

  // Special-case linux-gate because it's not a real file.
  if (my_strcmp(mapping.name, kLinuxGateLibraryName) == 0) {
    void* linux_gate = NULL;
    if (pid_ == sys_getpid()) {
      linux_gate = reinterpret_cast<void*>(mapping.start_addr);
    } else {
      linux_gate = allocator_.Alloc(mapping.size);
      CopyFromProcess(linux_gate, pid_,
                      reinterpret_cast<const void*>(mapping.start_addr),
                      mapping.size);
    }
    return FileID::ElfFileIdentifierFromMappedFile(linux_gate, identifier);
  }

  char filename[PATH_MAX];
  if (!GetMappingAbsolutePath(mapping, filename))
    return false;
  bool filename_modified = HandleDeletedFileInMapping(filename);

  MemoryMappedFile mapped_file(filename, mapping.offset);
  if (!mapped_file.data() || mapped_file.size() < SELFMAG)
    return false;

  bool success =
      FileID::ElfFileIdentifierFromMappedFile(mapped_file.data(), identifier);
  if (success && member && filename_modified) {
    mappings_[mapping_id]->name[my_strlen(mapping.name) -
                                sizeof(kDeletedSuffix) + 1] = '\0';
  }

  return success;
}

bool LinuxDumper::GetMappingAbsolutePath(const MappingInfo& mapping,
                                         char path[PATH_MAX]) const {
  return my_strlcpy(path, root_prefix_, PATH_MAX) < PATH_MAX &&
         my_strlcat(path, mapping.name, PATH_MAX) < PATH_MAX;
}

namespace {
bool ElfFileSoNameFromMappedFile(
    const void* elf_base, char* soname, size_t soname_size) {
  if (!IsValidElf(elf_base)) {
    // Not ELF
    return false;
  }

  const void* segment_start;
  size_t segment_size;
  if (!FindElfSection(elf_base, ".dynamic", SHT_DYNAMIC, &segment_start,
                      &segment_size)) {
    // No dynamic section
    return false;
  }

  const void* dynstr_start;
  size_t dynstr_size;
  if (!FindElfSection(elf_base, ".dynstr", SHT_STRTAB, &dynstr_start,
                      &dynstr_size)) {
    // No dynstr section
    return false;
  }

  const ElfW(Dyn)* dynamic = static_cast<const ElfW(Dyn)*>(segment_start);
  size_t dcount = segment_size / sizeof(ElfW(Dyn));
  for (const ElfW(Dyn)* dyn = dynamic; dyn < dynamic + dcount; ++dyn) {
    if (dyn->d_tag == DT_SONAME) {
      const char* dynstr = static_cast<const char*>(dynstr_start);
      if (dyn->d_un.d_val >= dynstr_size) {
        // Beyond the end of the dynstr section
        return false;
      }
      const char* str = dynstr + dyn->d_un.d_val;
      const size_t maxsize = dynstr_size - dyn->d_un.d_val;
      my_strlcpy(soname, str, maxsize < soname_size ? maxsize : soname_size);
      return true;
    }
  }

  // Did not find SONAME
  return false;
}

// Find the shared object name (SONAME) by examining the ELF information
// for |mapping|. If the SONAME is found copy it into the passed buffer
// |soname| and return true. The size of the buffer is |soname_size|.
// The SONAME will be truncated if it is too long to fit in the buffer.
bool ElfFileSoName(const LinuxDumper& dumper,
    const MappingInfo& mapping, char* soname, size_t soname_size) {
  if (IsMappedFileOpenUnsafe(mapping)) {
    // Not safe
    return false;
  }

  char filename[PATH_MAX];
  if (!dumper.GetMappingAbsolutePath(mapping, filename))
    return false;

  MemoryMappedFile mapped_file(filename, mapping.offset);
  if (!mapped_file.data() || mapped_file.size() < SELFMAG) {
    // mmap failed
    return false;
  }

  return ElfFileSoNameFromMappedFile(mapped_file.data(), soname, soname_size);
}

}  // namespace


void LinuxDumper::GetMappingEffectiveNameAndPath(const MappingInfo& mapping,
                                                 char* file_path,
                                                 size_t file_path_size,
                                                 char* file_name,
                                                 size_t file_name_size) {
  my_strlcpy(file_path, mapping.name, file_path_size);

  // If an executable is mapped from a non-zero offset, this is likely because
  // the executable was loaded directly from inside an archive file (e.g., an
  // apk on Android). We try to find the name of the shared object (SONAME) by
  // looking in the file for ELF sections.
  bool mapped_from_archive = false;
  if (mapping.exec && mapping.offset != 0) {
    mapped_from_archive =
        ElfFileSoName(*this, mapping, file_name, file_name_size);
  }

  if (mapped_from_archive) {
    // Some tools (e.g., stackwalk) extract the basename from the pathname. In
    // this case, we append the file_name to the mapped archive path as follows:
    //   file_name := libname.so
    //   file_path := /path/to/ARCHIVE.APK/libname.so
    if (my_strlen(file_path) + 1 + my_strlen(file_name) < file_path_size) {
      my_strlcat(file_path, "/", file_path_size);
      my_strlcat(file_path, file_name, file_path_size);
    }
  } else {
    // Common case:
    //   file_path := /path/to/libname.so
    //   file_name := libname.so
    const char* basename = my_strrchr(file_path, '/');
    basename = basename == NULL ? file_path : (basename + 1);
    my_strlcpy(file_name, basename, file_name_size);
  }
}

bool LinuxDumper::ReadAuxv() {
  char auxv_path[NAME_MAX];
  if (!BuildProcPath(auxv_path, pid_, "auxv")) {
    return false;
  }

  int fd = sys_open(auxv_path, O_RDONLY, 0);
  if (fd < 0) {
    return false;
  }

  elf_aux_entry one_aux_entry;
  bool res = false;
  while (sys_read(fd,
                  &one_aux_entry,
                  sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
         one_aux_entry.a_type != AT_NULL) {
    if (one_aux_entry.a_type <= AT_MAX) {
      auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
      res = true;
    }
  }
  sys_close(fd);
  return res;
}

bool LinuxDumper::EnumerateMappings() {
  char maps_path[NAME_MAX];
  if (!BuildProcPath(maps_path, pid_, "maps"))
    return false;

  // linux_gate_loc is the beginning of the kernel's mapping of
  // linux-gate.so in the process.  It doesn't actually show up in the
  // maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
  // aux vector entry, which gives the information necessary to special
  // case its entry when creating the list of mappings.
  // See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
  // information.
  const void* linux_gate_loc =
      reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
  // Although the initial executable is usually the first mapping, it's not
  // guaranteed (see http://crosbug.com/25355); therefore, try to use the
  // actual entry point to find the mapping.
  const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);

  const int fd = sys_open(maps_path, O_RDONLY, 0);
  if (fd < 0)
    return false;
  LineReader* const line_reader = new(allocator_) LineReader(fd);

  const char* line;
  unsigned line_len;
  while (line_reader->GetNextLine(&line, &line_len)) {
    uintptr_t start_addr, end_addr, offset;

    const char* i1 = my_read_hex_ptr(&start_addr, line);
    if (*i1 == '-') {
      const char* i2 = my_read_hex_ptr(&end_addr, i1 + 1);
      if (*i2 == ' ') {
        bool exec = (*(i2 + 3) == 'x');
        const char* i3 = my_read_hex_ptr(&offset, i2 + 6 /* skip ' rwxp ' */);
        if (*i3 == ' ') {
          const char* name = NULL;
          // Only copy name if the name is a valid path name, or if
          // it's the VDSO image.
          if (((name = my_strchr(line, '/')) == NULL) &&
              linux_gate_loc &&
              reinterpret_cast<void*>(start_addr) == linux_gate_loc) {
            name = kLinuxGateLibraryName;
            offset = 0;
          }
          // Merge adjacent mappings into one module, assuming they're a single
          // library mapped by the dynamic linker. Do this only if their name
          // matches and either they have the same +x protection flag, or if the
          // previous mapping is not executable and the new one is, to handle
          // lld's output (see crbug.com/716484).
          if (name && !mappings_.empty()) {
            MappingInfo* module = mappings_.back();
            if ((start_addr == module->start_addr + module->size) &&
                (my_strlen(name) == my_strlen(module->name)) &&
                (my_strncmp(name, module->name, my_strlen(name)) == 0) &&
                ((exec == module->exec) || (!module->exec && exec))) {
              module->system_mapping_info.end_addr = end_addr;
              module->size = end_addr - module->start_addr;
              module->exec |= exec;
              line_reader->PopLine(line_len);
              continue;
            }
          }
          MappingInfo* const module = new(allocator_) MappingInfo;
          my_memset(module, 0, sizeof(MappingInfo));
          module->system_mapping_info.start_addr = start_addr;
          module->system_mapping_info.end_addr = end_addr;
          module->start_addr = start_addr;
          module->size = end_addr - start_addr;
          module->offset = offset;
          module->exec = exec;
          if (name != NULL) {
            const unsigned l = my_strlen(name);
            if (l < sizeof(module->name))
              my_memcpy(module->name, name, l);
          }
          // If this is the entry-point mapping, and it's not already the
          // first one, then we need to make it be first.  This is because
          // the minidump format assumes the first module is the one that
          // corresponds to the main executable (as codified in
          // processor/minidump.cc:MinidumpModuleList::GetMainModule()).
          if (entry_point_loc &&
              (entry_point_loc >=
                  reinterpret_cast<void*>(module->start_addr)) &&
              (entry_point_loc <
                  reinterpret_cast<void*>(module->start_addr+module->size)) &&
              !mappings_.empty()) {
            // push the module onto the front of the list.
            mappings_.resize(mappings_.size() + 1);
            for (size_t idx = mappings_.size() - 1; idx > 0; idx--)
              mappings_[idx] = mappings_[idx - 1];
            mappings_[0] = module;
          } else {
            mappings_.push_back(module);
          }
        }
      }
    }
    line_reader->PopLine(line_len);
  }

  sys_close(fd);

  return !mappings_.empty();
}

#if defined(__ANDROID__)

bool LinuxDumper::GetLoadedElfHeader(uintptr_t start_addr, ElfW(Ehdr)* ehdr) {
  CopyFromProcess(ehdr, pid_,
                  reinterpret_cast<const void*>(start_addr),
                  sizeof(*ehdr));
  return my_memcmp(&ehdr->e_ident, ELFMAG, SELFMAG) == 0;
}

void LinuxDumper::ParseLoadedElfProgramHeaders(ElfW(Ehdr)* ehdr,
                                               uintptr_t start_addr,
                                               uintptr_t* min_vaddr_ptr,
                                               uintptr_t* dyn_vaddr_ptr,
                                               size_t* dyn_count_ptr) {
  uintptr_t phdr_addr = start_addr + ehdr->e_phoff;

  const uintptr_t max_addr = UINTPTR_MAX;
  uintptr_t min_vaddr = max_addr;
  uintptr_t dyn_vaddr = 0;
  size_t dyn_count = 0;

  for (size_t i = 0; i < ehdr->e_phnum; ++i) {
    ElfW(Phdr) phdr;
    CopyFromProcess(&phdr, pid_,
                    reinterpret_cast<const void*>(phdr_addr),
                    sizeof(phdr));
    if (phdr.p_type == PT_LOAD && phdr.p_vaddr < min_vaddr) {
      min_vaddr = phdr.p_vaddr;
    }
    if (phdr.p_type == PT_DYNAMIC) {
      dyn_vaddr = phdr.p_vaddr;
      dyn_count = phdr.p_memsz / sizeof(ElfW(Dyn));
    }
    phdr_addr += sizeof(phdr);
  }

  *min_vaddr_ptr = min_vaddr;
  *dyn_vaddr_ptr = dyn_vaddr;
  *dyn_count_ptr = dyn_count;
}

bool LinuxDumper::HasAndroidPackedRelocations(uintptr_t load_bias,
                                              uintptr_t dyn_vaddr,
                                              size_t dyn_count) {
  uintptr_t dyn_addr = load_bias + dyn_vaddr;
  for (size_t i = 0; i < dyn_count; ++i) {
    ElfW(Dyn) dyn;
    CopyFromProcess(&dyn, pid_,
                    reinterpret_cast<const void*>(dyn_addr),
                    sizeof(dyn));
    if (dyn.d_tag == DT_ANDROID_REL || dyn.d_tag == DT_ANDROID_RELA) {
      return true;
    }
    dyn_addr += sizeof(dyn);
  }
  return false;
}

uintptr_t LinuxDumper::GetEffectiveLoadBias(ElfW(Ehdr)* ehdr,
                                            uintptr_t start_addr) {
  uintptr_t min_vaddr = 0;
  uintptr_t dyn_vaddr = 0;
  size_t dyn_count = 0;
  ParseLoadedElfProgramHeaders(ehdr, start_addr,
                               &min_vaddr, &dyn_vaddr, &dyn_count);
  // If |min_vaddr| is non-zero and we find Android packed relocation tags,
  // return the effective load bias.
  if (min_vaddr != 0) {
    const uintptr_t load_bias = start_addr - min_vaddr;
    if (HasAndroidPackedRelocations(load_bias, dyn_vaddr, dyn_count)) {
      return load_bias;
    }
  }
  // Either |min_vaddr| is zero, or it is non-zero but we did not find the
  // expected Android packed relocations tags.
  return start_addr;
}

void LinuxDumper::LatePostprocessMappings() {
  for (size_t i = 0; i < mappings_.size(); ++i) {
    // Only consider exec mappings that indicate a file path was mapped, and
    // where the ELF header indicates a mapped shared library.
    MappingInfo* mapping = mappings_[i];
    if (!(mapping->exec && mapping->name[0] == '/')) {
      continue;
    }
    ElfW(Ehdr) ehdr;
    if (!GetLoadedElfHeader(mapping->start_addr, &ehdr)) {
      continue;
    }
    if (ehdr.e_type == ET_DYN) {
      // Compute the effective load bias for this mapped library, and update
      // the mapping to hold that rather than |start_addr|, at the same time
      // adjusting |size| to account for the change in |start_addr|. Where
      // the library does not contain Android packed relocations,
      // GetEffectiveLoadBias() returns |start_addr| and the mapping entry
      // is not changed.
      const uintptr_t load_bias = GetEffectiveLoadBias(&ehdr,
                                                       mapping->start_addr);
      mapping->size += mapping->start_addr - load_bias;
      mapping->start_addr = load_bias;
    }
  }
}

#endif  // __ANDROID__

// Get information about the stack, given the stack pointer. We don't try to
// walk the stack since we might not have all the information needed to do
// unwind. So we just grab, up to, 32k of stack.
bool LinuxDumper::GetStackInfo(const void** stack, size_t* stack_len,
                               uintptr_t int_stack_pointer) {
  // Move the stack pointer to the bottom of the page that it's in.
  const uintptr_t page_size = getpagesize();

  uint8_t* const stack_pointer =
      reinterpret_cast<uint8_t*>(int_stack_pointer & ~(page_size - 1));

  // The number of bytes of stack which we try to capture.
  static const ptrdiff_t kStackToCapture = 32 * 1024;

  const MappingInfo* mapping = FindMapping(stack_pointer);
  if (!mapping)
    return false;
  const ptrdiff_t offset = stack_pointer -
      reinterpret_cast<uint8_t*>(mapping->start_addr);
  const ptrdiff_t distance_to_end =
      static_cast<ptrdiff_t>(mapping->size) - offset;
  *stack_len = distance_to_end > kStackToCapture ?
      kStackToCapture : distance_to_end;
  *stack = stack_pointer;
  return true;
}

void LinuxDumper::SanitizeStackCopy(uint8_t* stack_copy, size_t stack_len,
                                    uintptr_t stack_pointer,
                                    uintptr_t sp_offset) {
  // We optimize the search for containing mappings in three ways:
  // 1) We expect that pointers into the stack mapping will be common, so
  //    we cache that address range.
  // 2) The last referenced mapping is a reasonable predictor for the next
  //    referenced mapping, so we test that first.
  // 3) We precompute a bitfield based upon bits 32:32-n of the start and
  //    stop addresses, and use that to short circuit any values that can
  //    not be pointers. (n=11)
  const uintptr_t defaced =
#if defined(__LP64__)
      0x0defaced0defaced;
#else
      0x0defaced;
#endif
  // the bitfield length is 2^test_bits long.
  const unsigned int test_bits = 11;
  // byte length of the corresponding array.
  const unsigned int array_size = 1 << (test_bits - 3);
  const unsigned int array_mask = array_size - 1;
  // The amount to right shift pointers by. This captures the top bits
  // on 32 bit architectures. On 64 bit architectures this would be
  // uninformative so we take the same range of bits.
  const unsigned int shift = 32 - 11;
  const MappingInfo* last_hit_mapping = nullptr;
  const MappingInfo* hit_mapping = nullptr;
  const MappingInfo* stack_mapping = FindMappingNoBias(stack_pointer);
  // The magnitude below which integers are considered to be to be
  // 'small', and not constitute a PII risk. These are included to
  // avoid eliding useful register values.
  const ssize_t small_int_magnitude = 4096;

  char could_hit_mapping[array_size];
  my_memset(could_hit_mapping, 0, array_size);

  // Initialize the bitfield such that if the (pointer >> shift)'th
  // bit, modulo the bitfield size, is not set then there does not
  // exist a mapping in mappings_ that would contain that pointer.
  for (size_t i = 0; i < mappings_.size(); ++i) {
    if (!mappings_[i]->exec) continue;
    // For each mapping, work out the (unmodulo'ed) range of bits to
    // set.
    uintptr_t start = mappings_[i]->start_addr;
    uintptr_t end = start + mappings_[i]->size;
    start >>= shift;
    end >>= shift;
    for (size_t bit = start; bit <= end; ++bit) {
      // Set each bit in the range, applying the modulus.
      could_hit_mapping[(bit >> 3) & array_mask] |= 1 << (bit & 7);
    }
  }

  // Zero memory that is below the current stack pointer.
  const uintptr_t offset =
      (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);
  if (offset) {
    my_memset(stack_copy, 0, offset);
  }

  // Apply sanitization to each complete pointer-aligned word in the
  // stack.
  uint8_t* sp;
  for (sp = stack_copy + offset;
       sp <= stack_copy + stack_len - sizeof(uintptr_t);
       sp += sizeof(uintptr_t)) {
    uintptr_t addr;
    my_memcpy(&addr, sp, sizeof(uintptr_t));
    if (static_cast<intptr_t>(addr) <= small_int_magnitude &&
        static_cast<intptr_t>(addr) >= -small_int_magnitude) {
      continue;
    }
    if (stack_mapping && MappingContainsAddress(*stack_mapping, addr)) {
      continue;
    }
    if (last_hit_mapping && MappingContainsAddress(*last_hit_mapping, addr)) {
      continue;
    }
    uintptr_t test = addr >> shift;
    if (could_hit_mapping[(test >> 3) & array_mask] & (1 << (test & 7)) &&
        (hit_mapping = FindMappingNoBias(addr)) != nullptr &&
        hit_mapping->exec) {
      last_hit_mapping = hit_mapping;
      continue;
    }
    my_memcpy(sp, &defaced, sizeof(uintptr_t));
  }
  // Zero any partial word at the top of the stack, if alignment is
  // such that that is required.
  if (sp < stack_copy + stack_len) {
    my_memset(sp, 0, stack_copy + stack_len - sp);
  }
}

bool LinuxDumper::StackHasPointerToMapping(const uint8_t* stack_copy,
                                           size_t stack_len,
                                           uintptr_t sp_offset,
                                           const MappingInfo& mapping) {
  // Loop over all stack words that would have been on the stack in
  // the target process (i.e. are word aligned, and at addresses >=
  // the stack pointer).  Regardless of the alignment of |stack_copy|,
  // the memory starting at |stack_copy| + |offset| represents an
  // aligned word in the target process.
  const uintptr_t low_addr = mapping.system_mapping_info.start_addr;
  const uintptr_t high_addr = mapping.system_mapping_info.end_addr;
  const uintptr_t offset =
      (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);

  for (const uint8_t* sp = stack_copy + offset;
       sp <= stack_copy + stack_len - sizeof(uintptr_t);
       sp += sizeof(uintptr_t)) {
    uintptr_t addr;
    my_memcpy(&addr, sp, sizeof(uintptr_t));
    if (low_addr <= addr && addr <= high_addr)
      return true;
  }
  return false;
}

// Find the mapping which the given memory address falls in.
const MappingInfo* LinuxDumper::FindMapping(const void* address) const {
  const uintptr_t addr = (uintptr_t) address;

  for (size_t i = 0; i < mappings_.size(); ++i) {
    const uintptr_t start = static_cast<uintptr_t>(mappings_[i]->start_addr);
    if (addr >= start && addr - start < mappings_[i]->size)
      return mappings_[i];
  }

  return NULL;
}

// Find the mapping which the given memory address falls in. Uses the
// unadjusted mapping address range from the kernel, rather than the
// biased range.
const MappingInfo* LinuxDumper::FindMappingNoBias(uintptr_t address) const {
  for (size_t i = 0; i < mappings_.size(); ++i) {
    if (address >= mappings_[i]->system_mapping_info.start_addr &&
        address < mappings_[i]->system_mapping_info.end_addr) {
      return mappings_[i];
    }
  }
  return NULL;
}

bool LinuxDumper::HandleDeletedFileInMapping(char* path) const {
  static const size_t kDeletedSuffixLen = sizeof(kDeletedSuffix) - 1;

  // Check for ' (deleted)' in |path|.
  // |path| has to be at least as long as "/x (deleted)".
  const size_t path_len = my_strlen(path);
  if (path_len < kDeletedSuffixLen + 2)
    return false;
  if (my_strncmp(path + path_len - kDeletedSuffixLen, kDeletedSuffix,
                 kDeletedSuffixLen) != 0) {
    return false;
  }

  // Check |path| against the /proc/pid/exe 'symlink'.
  char exe_link[NAME_MAX];
  if (!BuildProcPath(exe_link, pid_, "exe"))
    return false;
  MappingInfo new_mapping = {0};
  if (!SafeReadLink(exe_link, new_mapping.name))
    return false;
  char new_path[PATH_MAX];
  if (!GetMappingAbsolutePath(new_mapping, new_path))
    return false;
  if (my_strcmp(path, new_path) != 0)
    return false;

  // Check to see if someone actually named their executable 'foo (deleted)'.
  struct kernel_stat exe_stat;
  struct kernel_stat new_path_stat;
  if (sys_stat(exe_link, &exe_stat) == 0 &&
      sys_stat(new_path, &new_path_stat) == 0 &&
      exe_stat.st_dev == new_path_stat.st_dev &&
      exe_stat.st_ino == new_path_stat.st_ino) {
    return false;
  }

  my_memcpy(path, exe_link, NAME_MAX);
  return true;
}

}  // namespace google_breakpad