aboutsummaryrefslogtreecommitdiff
path: root/src/client/mac/handler/minidump_generator.cc
blob: 8c796243341f427ce87f7f83ccf7399622d21c90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <algorithm>
#include <cstdio>

#include <mach/host_info.h>
#include <mach/machine.h>
#include <mach/vm_statistics.h>
#include <mach-o/dyld.h>
#include <mach-o/loader.h>
#include <sys/sysctl.h>
#include <sys/resource.h>

#include <CoreFoundation/CoreFoundation.h>

#include "client/mac/handler/minidump_generator.h"

#if defined(HAS_ARM_SUPPORT) || defined(HAS_ARM64_SUPPORT)
#include <mach/arm/thread_status.h>
#endif
#ifdef HAS_PPC_SUPPORT
#include <mach/ppc/thread_status.h>
#endif
#ifdef HAS_X86_SUPPORT
#include <mach/i386/thread_status.h>
#endif

#include "client/minidump_file_writer-inl.h"
#include "common/mac/file_id.h"
#include "common/mac/macho_id.h"
#include "common/mac/string_utilities.h"

using MacStringUtils::ConvertToString;
using MacStringUtils::IntegerValueAtIndex;

namespace google_breakpad {

#if defined(__LP64__) && __LP64__
#define LC_SEGMENT_ARCH LC_SEGMENT_64
#else
#define LC_SEGMENT_ARCH LC_SEGMENT
#endif

// constructor when generating from within the crashed process
MinidumpGenerator::MinidumpGenerator()
    : writer_(),
      exception_type_(0),
      exception_code_(0),
      exception_subcode_(0),
      exception_thread_(0),
      crashing_task_(mach_task_self()),
      handler_thread_(mach_thread_self()),
      cpu_type_(DynamicImages::GetNativeCPUType()),
      task_context_(NULL),
      dynamic_images_(NULL),
      memory_blocks_(&allocator_) {
  GatherSystemInformation();
}

// constructor when generating from a different process than the
// crashed process
MinidumpGenerator::MinidumpGenerator(mach_port_t crashing_task,
                                     mach_port_t handler_thread)
    : writer_(),
      exception_type_(0),
      exception_code_(0),
      exception_subcode_(0),
      exception_thread_(0),
      crashing_task_(crashing_task),
      handler_thread_(handler_thread),
      cpu_type_(DynamicImages::GetNativeCPUType()),
      task_context_(NULL),
      dynamic_images_(NULL),
      memory_blocks_(&allocator_) {
  if (crashing_task != mach_task_self()) {
    dynamic_images_ = new DynamicImages(crashing_task_);
    cpu_type_ = dynamic_images_->GetCPUType();
  } else {
    dynamic_images_ = NULL;
    cpu_type_ = DynamicImages::GetNativeCPUType();
  }

  GatherSystemInformation();
}

MinidumpGenerator::~MinidumpGenerator() {
  delete dynamic_images_;
}

char MinidumpGenerator::build_string_[16];
int MinidumpGenerator::os_major_version_ = 0;
int MinidumpGenerator::os_minor_version_ = 0;
int MinidumpGenerator::os_build_number_ = 0;

// static
void MinidumpGenerator::GatherSystemInformation() {
  // If this is non-zero, then we've already gathered the information
  if (os_major_version_)
    return;

  // This code extracts the version and build information from the OS
  CFStringRef vers_path =
    CFSTR("/System/Library/CoreServices/SystemVersion.plist");
  CFURLRef sys_vers =
    CFURLCreateWithFileSystemPath(NULL,
                                  vers_path,
                                  kCFURLPOSIXPathStyle,
                                  false);
  CFReadStreamRef read_stream = CFReadStreamCreateWithFile(NULL, sys_vers);
  CFRelease(sys_vers);
  if (!read_stream) {
    return;
  }
  if (!CFReadStreamOpen(read_stream)) {
    CFRelease(read_stream);
    return;
  }
  CFMutableDataRef data = NULL;
  while (true) {
    // Actual data file tests: Mac at 480 bytes and iOS at 413 bytes.
    const CFIndex kMaxBufferLength = 1024;
    UInt8 data_bytes[kMaxBufferLength];
    CFIndex num_bytes_read =
      CFReadStreamRead(read_stream, data_bytes, kMaxBufferLength);
    if (num_bytes_read < 0) {
      if (data) {
        CFRelease(data);
        data = NULL;
      }
      break;
    } else if (num_bytes_read == 0) {
      break;
    } else if (!data) {
      data = CFDataCreateMutable(NULL, 0);
    }
    CFDataAppendBytes(data, data_bytes, num_bytes_read);
  }
  CFReadStreamClose(read_stream);
  CFRelease(read_stream);
  if (!data) {
    return;
  }
  CFDictionaryRef list =
      static_cast<CFDictionaryRef>(CFPropertyListCreateWithData(
          NULL, data, kCFPropertyListImmutable, NULL, NULL));
  CFRelease(data);
  if (!list) {
    return;
  }
  CFStringRef build_version = static_cast<CFStringRef>
    (CFDictionaryGetValue(list, CFSTR("ProductBuildVersion")));
  CFStringRef product_version = static_cast<CFStringRef>
    (CFDictionaryGetValue(list, CFSTR("ProductVersion")));
  string build_str = ConvertToString(build_version);
  string product_str = ConvertToString(product_version);

  CFRelease(list);

  strlcpy(build_string_, build_str.c_str(), sizeof(build_string_));

  // Parse the string that looks like "10.4.8"
  os_major_version_ = IntegerValueAtIndex(product_str, 0);
  os_minor_version_ = IntegerValueAtIndex(product_str, 1);
  os_build_number_ = IntegerValueAtIndex(product_str, 2);
}

void MinidumpGenerator::SetTaskContext(breakpad_ucontext_t *task_context) {
  task_context_ = task_context;
}

string MinidumpGenerator::UniqueNameInDirectory(const string &dir,
                                                string *unique_name) {
  CFUUIDRef uuid = CFUUIDCreate(NULL);
  CFStringRef uuid_cfstr = CFUUIDCreateString(NULL, uuid);
  CFRelease(uuid);
  string file_name(ConvertToString(uuid_cfstr));
  CFRelease(uuid_cfstr);
  string path(dir);

  // Ensure that the directory (if non-empty) has a trailing slash so that
  // we can append the file name and have a valid pathname.
  if (!dir.empty()) {
    if (dir.at(dir.size() - 1) != '/')
      path.append(1, '/');
  }

  path.append(file_name);
  path.append(".dmp");

  if (unique_name)
    *unique_name = file_name;

  return path;
}

bool MinidumpGenerator::Write(const char *path) {
  WriteStreamFN writers[] = {
    &MinidumpGenerator::WriteThreadListStream,
    &MinidumpGenerator::WriteMemoryListStream,
    &MinidumpGenerator::WriteSystemInfoStream,
    &MinidumpGenerator::WriteModuleListStream,
    &MinidumpGenerator::WriteMiscInfoStream,
    &MinidumpGenerator::WriteBreakpadInfoStream,
    // Exception stream needs to be the last entry in this array as it may
    // be omitted in the case where the minidump is written without an
    // exception.
    &MinidumpGenerator::WriteExceptionStream,
  };
  bool result = false;

  // If opening was successful, create the header, directory, and call each
  // writer.  The destructor for the TypedMDRVAs will cause the data to be
  // flushed.  The destructor for the MinidumpFileWriter will close the file.
  if (writer_.Open(path)) {
    TypedMDRVA<MDRawHeader> header(&writer_);
    TypedMDRVA<MDRawDirectory> dir(&writer_);

    if (!header.Allocate())
      return false;

    int writer_count = static_cast<int>(sizeof(writers) / sizeof(writers[0]));

    // If we don't have exception information, don't write out the
    // exception stream
    if (!exception_thread_ && !exception_type_)
      --writer_count;

    // Add space for all writers
    if (!dir.AllocateArray(writer_count))
      return false;

    MDRawHeader *header_ptr = header.get();
    header_ptr->signature = MD_HEADER_SIGNATURE;
    header_ptr->version = MD_HEADER_VERSION;
    time(reinterpret_cast<time_t *>(&(header_ptr->time_date_stamp)));
    header_ptr->stream_count = writer_count;
    header_ptr->stream_directory_rva = dir.position();

    MDRawDirectory local_dir;
    result = true;
    for (int i = 0; (result) && (i < writer_count); ++i) {
      result = (this->*writers[i])(&local_dir);

      if (result)
        dir.CopyIndex(i, &local_dir);
    }
  }
  return result;
}

size_t MinidumpGenerator::CalculateStackSize(mach_vm_address_t start_addr) {
  mach_vm_address_t stack_region_base = start_addr;
  mach_vm_size_t stack_region_size;
  natural_t nesting_level = 0;
  vm_region_submap_info_64 submap_info;
  mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT_64;

  vm_region_recurse_info_t region_info;
  region_info = reinterpret_cast<vm_region_recurse_info_t>(&submap_info);

  if (start_addr == 0) {
    return 0;
  }

  kern_return_t result =
    mach_vm_region_recurse(crashing_task_, &stack_region_base,
                           &stack_region_size, &nesting_level,
                           region_info, &info_count);

  if (result != KERN_SUCCESS || start_addr < stack_region_base) {
    // Failure or stack corruption, since mach_vm_region had to go
    // higher in the process address space to find a valid region.
    return 0;
  }

  unsigned int tag = submap_info.user_tag;

  // If the user tag is VM_MEMORY_STACK, look for more readable regions with
  // the same tag placed immediately above the computed stack region. Under
  // some circumstances, the stack for thread 0 winds up broken up into
  // multiple distinct abutting regions. This can happen for several reasons,
  // including user code that calls setrlimit(RLIMIT_STACK, ...) or changes
  // the access on stack pages by calling mprotect.
  if (tag == VM_MEMORY_STACK) {
    while (true) {
      mach_vm_address_t next_region_base = stack_region_base +
                                           stack_region_size;
      mach_vm_address_t proposed_next_region_base = next_region_base;
      mach_vm_size_t next_region_size;
      nesting_level = 0;
      info_count = VM_REGION_SUBMAP_INFO_COUNT_64;
      result = mach_vm_region_recurse(crashing_task_, &next_region_base,
                                      &next_region_size, &nesting_level,
                                      region_info, &info_count);
      if (result != KERN_SUCCESS ||
          next_region_base != proposed_next_region_base ||
          submap_info.user_tag != tag ||
          (submap_info.protection & VM_PROT_READ) == 0) {
        break;
      }

      stack_region_size += next_region_size;
    }
  }

  return stack_region_base + stack_region_size - start_addr;
}

bool MinidumpGenerator::WriteStackFromStartAddress(
    mach_vm_address_t start_addr,
    MDMemoryDescriptor *stack_location) {
  UntypedMDRVA memory(&writer_);

  bool result = false;
  size_t size = CalculateStackSize(start_addr);

  if (size == 0) {
      // In some situations the stack address for the thread can come back 0.
      // In these cases we skip over the threads in question and stuff the
      // stack with a clearly borked value.
      start_addr = 0xDEADBEEF;
      size = 16;
      if (!memory.Allocate(size))
        return false;

      unsigned long long dummy_stack[2];  // Fill dummy stack with 16 bytes of
                                          // junk.
      dummy_stack[0] = 0xDEADBEEF;
      dummy_stack[1] = 0xDEADBEEF;

      result = memory.Copy(dummy_stack, size);
  } else {

    if (!memory.Allocate(size))
      return false;

    if (dynamic_images_) {
      vector<uint8_t> stack_memory;
      if (ReadTaskMemory(crashing_task_,
                         start_addr,
                         size,
                         stack_memory) != KERN_SUCCESS) {
        return false;
      }

      result = memory.Copy(&stack_memory[0], size);
    } else {
      result = memory.Copy(reinterpret_cast<const void *>(start_addr), size);
    }
  }

  stack_location->start_of_memory_range = start_addr;
  stack_location->memory = memory.location();

  return result;
}

bool MinidumpGenerator::WriteStack(breakpad_thread_state_data_t state,
                                   MDMemoryDescriptor *stack_location) {
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      return WriteStackARM(state, stack_location);
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      return WriteStackARM64(state, stack_location);
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      return WriteStackPPC(state, stack_location);
    case CPU_TYPE_POWERPC64:
      return WriteStackPPC64(state, stack_location);
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      return WriteStackX86(state, stack_location);
    case CPU_TYPE_X86_64:
      return WriteStackX86_64(state, stack_location);
#endif
    default:
      return false;
  }
}

bool MinidumpGenerator::WriteContext(breakpad_thread_state_data_t state,
                                     MDLocationDescriptor *register_location) {
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      return WriteContextARM(state, register_location);
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      return WriteContextARM64(state, register_location);
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      return WriteContextPPC(state, register_location);
    case CPU_TYPE_POWERPC64:
      return WriteContextPPC64(state, register_location);
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      return WriteContextX86(state, register_location);
    case CPU_TYPE_X86_64:
      return WriteContextX86_64(state, register_location);
#endif
    default:
      return false;
  }
}

uint64_t MinidumpGenerator::CurrentPCForStack(
    breakpad_thread_state_data_t state) {
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      return CurrentPCForStackARM(state);
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      return CurrentPCForStackARM64(state);
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      return CurrentPCForStackPPC(state);
    case CPU_TYPE_POWERPC64:
      return CurrentPCForStackPPC64(state);
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      return CurrentPCForStackX86(state);
    case CPU_TYPE_X86_64:
      return CurrentPCForStackX86_64(state);
#endif
    default:
      assert(0 && "Unknown CPU type!");
      return 0;
  }
}

#ifdef HAS_ARM_SUPPORT
bool MinidumpGenerator::WriteStackARM(breakpad_thread_state_data_t state,
                                      MDMemoryDescriptor *stack_location) {
  arm_thread_state_t *machine_state =
      reinterpret_cast<arm_thread_state_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, sp);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackARM(breakpad_thread_state_data_t state) {
  arm_thread_state_t *machine_state =
      reinterpret_cast<arm_thread_state_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, pc);
}

bool MinidumpGenerator::WriteContextARM(breakpad_thread_state_data_t state,
                                        MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextARM> context(&writer_);
  arm_thread_state_t *machine_state =
      reinterpret_cast<arm_thread_state_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextARM *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_ARM_FULL;

#define AddGPR(a) context_ptr->iregs[a] = REGISTER_FROM_THREADSTATE(machine_state, r[a])

  context_ptr->iregs[13] = REGISTER_FROM_THREADSTATE(machine_state, sp);
  context_ptr->iregs[14] = REGISTER_FROM_THREADSTATE(machine_state, lr);
  context_ptr->iregs[15] = REGISTER_FROM_THREADSTATE(machine_state, pc);
  context_ptr->cpsr = REGISTER_FROM_THREADSTATE(machine_state, cpsr);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
#undef AddGPR

  return true;
}
#endif

#ifdef HAS_ARM64_SUPPORT
bool MinidumpGenerator::WriteStackARM64(breakpad_thread_state_data_t state,
                                        MDMemoryDescriptor *stack_location) {
  arm_thread_state64_t *machine_state =
      reinterpret_cast<arm_thread_state64_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, sp);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackARM64(breakpad_thread_state_data_t state) {
  arm_thread_state64_t *machine_state =
      reinterpret_cast<arm_thread_state64_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, pc);
}

bool
MinidumpGenerator::WriteContextARM64(breakpad_thread_state_data_t state,
                                     MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextARM64_Old> context(&writer_);
  arm_thread_state64_t *machine_state =
      reinterpret_cast<arm_thread_state64_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextARM64_Old *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_ARM64_FULL_OLD;

#define AddGPR(a) context_ptr->iregs[a] = \
    REGISTER_FROM_THREADSTATE(machine_state, x[a])

  context_ptr->iregs[29] = REGISTER_FROM_THREADSTATE(machine_state, fp);
  context_ptr->iregs[30] = REGISTER_FROM_THREADSTATE(machine_state, lr);
  context_ptr->iregs[31] = REGISTER_FROM_THREADSTATE(machine_state, sp);
  context_ptr->iregs[32] = REGISTER_FROM_THREADSTATE(machine_state, pc);
  context_ptr->cpsr = REGISTER_FROM_THREADSTATE(machine_state, cpsr);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
  AddGPR(13);
  AddGPR(14);
  AddGPR(15);
  AddGPR(16);
  AddGPR(17);
  AddGPR(18);
  AddGPR(19);
  AddGPR(20);
  AddGPR(21);
  AddGPR(22);
  AddGPR(23);
  AddGPR(24);
  AddGPR(25);
  AddGPR(26);
  AddGPR(27);
  AddGPR(28);
#undef AddGPR

  return true;
}
#endif

#ifdef HAS_PCC_SUPPORT
bool MinidumpGenerator::WriteStackPPC(breakpad_thread_state_data_t state,
                                      MDMemoryDescriptor *stack_location) {
  ppc_thread_state_t *machine_state =
      reinterpret_cast<ppc_thread_state_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, r1);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

bool MinidumpGenerator::WriteStackPPC64(breakpad_thread_state_data_t state,
                                        MDMemoryDescriptor *stack_location) {
  ppc_thread_state64_t *machine_state =
      reinterpret_cast<ppc_thread_state64_t *>(state);
  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, r1);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackPPC(breakpad_thread_state_data_t state) {
  ppc_thread_state_t *machine_state =
      reinterpret_cast<ppc_thread_state_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, srr0);
}

uint64_t
MinidumpGenerator::CurrentPCForStackPPC64(breakpad_thread_state_data_t state) {
  ppc_thread_state64_t *machine_state =
      reinterpret_cast<ppc_thread_state64_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, srr0);
}

bool MinidumpGenerator::WriteContextPPC(breakpad_thread_state_data_t state,
                                        MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextPPC> context(&writer_);
  ppc_thread_state_t *machine_state =
      reinterpret_cast<ppc_thread_state_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextPPC *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_PPC_BASE;

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))
#define AddGPR(a) context_ptr->gpr[a] = \
    static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, r ## a)

  AddReg(srr0);
  AddReg(cr);
  AddReg(xer);
  AddReg(ctr);
  AddReg(lr);
  AddReg(vrsave);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
  AddGPR(13);
  AddGPR(14);
  AddGPR(15);
  AddGPR(16);
  AddGPR(17);
  AddGPR(18);
  AddGPR(19);
  AddGPR(20);
  AddGPR(21);
  AddGPR(22);
  AddGPR(23);
  AddGPR(24);
  AddGPR(25);
  AddGPR(26);
  AddGPR(27);
  AddGPR(28);
  AddGPR(29);
  AddGPR(30);
  AddGPR(31);
  AddReg(mq);
#undef AddReg
#undef AddGPR

  return true;
}

bool MinidumpGenerator::WriteContextPPC64(
    breakpad_thread_state_data_t state,
    MDLocationDescriptor *register_location) {
  TypedMDRVA<MDRawContextPPC64> context(&writer_);
  ppc_thread_state64_t *machine_state =
      reinterpret_cast<ppc_thread_state64_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextPPC64 *context_ptr = context.get();
  context_ptr->context_flags = MD_CONTEXT_PPC_BASE;

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))
#define AddGPR(a) context_ptr->gpr[a] = \
    static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, r ## a)

  AddReg(srr0);
  AddReg(cr);
  AddReg(xer);
  AddReg(ctr);
  AddReg(lr);
  AddReg(vrsave);

  AddGPR(0);
  AddGPR(1);
  AddGPR(2);
  AddGPR(3);
  AddGPR(4);
  AddGPR(5);
  AddGPR(6);
  AddGPR(7);
  AddGPR(8);
  AddGPR(9);
  AddGPR(10);
  AddGPR(11);
  AddGPR(12);
  AddGPR(13);
  AddGPR(14);
  AddGPR(15);
  AddGPR(16);
  AddGPR(17);
  AddGPR(18);
  AddGPR(19);
  AddGPR(20);
  AddGPR(21);
  AddGPR(22);
  AddGPR(23);
  AddGPR(24);
  AddGPR(25);
  AddGPR(26);
  AddGPR(27);
  AddGPR(28);
  AddGPR(29);
  AddGPR(30);
  AddGPR(31);
#undef AddReg
#undef AddGPR

  return true;
}

#endif

#ifdef HAS_X86_SUPPORT
bool MinidumpGenerator::WriteStackX86(breakpad_thread_state_data_t state,
                                   MDMemoryDescriptor *stack_location) {
  i386_thread_state_t *machine_state =
      reinterpret_cast<i386_thread_state_t *>(state);

  mach_vm_address_t start_addr = REGISTER_FROM_THREADSTATE(machine_state, esp);
  return WriteStackFromStartAddress(start_addr, stack_location);
}

bool MinidumpGenerator::WriteStackX86_64(breakpad_thread_state_data_t state,
                                         MDMemoryDescriptor *stack_location) {
  x86_thread_state64_t *machine_state =
      reinterpret_cast<x86_thread_state64_t *>(state);

  mach_vm_address_t start_addr = static_cast<mach_vm_address_t>(
      REGISTER_FROM_THREADSTATE(machine_state, rsp));
  return WriteStackFromStartAddress(start_addr, stack_location);
}

uint64_t
MinidumpGenerator::CurrentPCForStackX86(breakpad_thread_state_data_t state) {
  i386_thread_state_t *machine_state =
      reinterpret_cast<i386_thread_state_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, eip);
}

uint64_t
MinidumpGenerator::CurrentPCForStackX86_64(breakpad_thread_state_data_t state) {
  x86_thread_state64_t *machine_state =
      reinterpret_cast<x86_thread_state64_t *>(state);

  return REGISTER_FROM_THREADSTATE(machine_state, rip);
}

bool MinidumpGenerator::WriteContextX86(breakpad_thread_state_data_t state,
                                        MDLocationDescriptor *register_location)
{
  TypedMDRVA<MDRawContextX86> context(&writer_);
  i386_thread_state_t *machine_state =
      reinterpret_cast<i386_thread_state_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextX86 *context_ptr = context.get();

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))

  context_ptr->context_flags = MD_CONTEXT_X86;
  AddReg(eax);
  AddReg(ebx);
  AddReg(ecx);
  AddReg(edx);
  AddReg(esi);
  AddReg(edi);
  AddReg(ebp);
  AddReg(esp);

  AddReg(cs);
  AddReg(ds);
  AddReg(ss);
  AddReg(es);
  AddReg(fs);
  AddReg(gs);
  AddReg(eflags);

  AddReg(eip);
#undef AddReg

  return true;
}

bool MinidumpGenerator::WriteContextX86_64(
    breakpad_thread_state_data_t state,
    MDLocationDescriptor *register_location) {
  TypedMDRVA<MDRawContextAMD64> context(&writer_);
  x86_thread_state64_t *machine_state =
      reinterpret_cast<x86_thread_state64_t *>(state);

  if (!context.Allocate())
    return false;

  *register_location = context.location();
  MDRawContextAMD64 *context_ptr = context.get();

#define AddReg(a) context_ptr->a = static_cast<__typeof__(context_ptr->a)>( \
    REGISTER_FROM_THREADSTATE(machine_state, a))

  context_ptr->context_flags = MD_CONTEXT_AMD64;
  AddReg(rax);
  AddReg(rbx);
  AddReg(rcx);
  AddReg(rdx);
  AddReg(rdi);
  AddReg(rsi);
  AddReg(rbp);
  AddReg(rsp);
  AddReg(r8);
  AddReg(r9);
  AddReg(r10);
  AddReg(r11);
  AddReg(r12);
  AddReg(r13);
  AddReg(r14);
  AddReg(r15);
  AddReg(rip);
  // according to AMD's software developer guide, bits above 18 are
  // not used in the flags register.  Since the minidump format
  // specifies 32 bits for the flags register, we can truncate safely
  // with no loss.
  context_ptr->eflags = static_cast<uint32_t>(REGISTER_FROM_THREADSTATE(machine_state, rflags));
  AddReg(cs);
  AddReg(fs);
  AddReg(gs);
#undef AddReg

  return true;
}
#endif

bool MinidumpGenerator::GetThreadState(thread_act_t target_thread,
                                       thread_state_t state,
                                       mach_msg_type_number_t *count) {
  if (task_context_ && target_thread == mach_thread_self()) {
    switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
      case CPU_TYPE_ARM:
        size_t final_size =
            std::min(static_cast<size_t>(*count), sizeof(arm_thread_state_t));
        memcpy(state, &task_context_->breakpad_uc_mcontext->__ss, final_size);
        *count = static_cast<mach_msg_type_number_t>(final_size);
        return true;
#endif
#ifdef HAS_ARM64_SUPPORT
      case CPU_TYPE_ARM64: {
        size_t final_size =
            std::min(static_cast<size_t>(*count), sizeof(arm_thread_state64_t));
        memcpy(state, &task_context_->breakpad_uc_mcontext->__ss, final_size);
        *count = static_cast<mach_msg_type_number_t>(final_size);
        return true;
      }
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
    case CPU_TYPE_X86_64: {
        size_t state_size = cpu_type_ == CPU_TYPE_I386 ?
            sizeof(i386_thread_state_t) : sizeof(x86_thread_state64_t);
        size_t final_size =
            std::min(static_cast<size_t>(*count), state_size);
        memcpy(state, &task_context_->breakpad_uc_mcontext->__ss, final_size);
        *count = static_cast<mach_msg_type_number_t>(final_size);
        return true;
      }
#endif
    }
  }

  thread_state_flavor_t flavor;
  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      flavor = ARM_THREAD_STATE;
      break;
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      flavor = ARM_THREAD_STATE64;
      break;
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
      flavor = PPC_THREAD_STATE;
      break;
    case CPU_TYPE_POWERPC64:
      flavor = PPC_THREAD_STATE64;
      break;
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
      flavor = i386_THREAD_STATE;
      break;
    case CPU_TYPE_X86_64:
      flavor = x86_THREAD_STATE64;
      break;
#endif
    default:
      return false;
  }
  return thread_get_state(target_thread, flavor,
                          state, count) == KERN_SUCCESS;
}

bool MinidumpGenerator::WriteThreadStream(mach_port_t thread_id,
                                          MDRawThread *thread) {
  breakpad_thread_state_data_t state;
  mach_msg_type_number_t state_count
      = static_cast<mach_msg_type_number_t>(sizeof(state));

  if (GetThreadState(thread_id, state, &state_count)) {
    if (!WriteStack(state, &thread->stack))
      return false;

    memory_blocks_.push_back(thread->stack);

    if (!WriteContext(state, &thread->thread_context))
      return false;

    thread->thread_id = thread_id;
  } else {
    return false;
  }

  return true;
}

bool MinidumpGenerator::WriteThreadListStream(
    MDRawDirectory *thread_list_stream) {
  TypedMDRVA<MDRawThreadList> list(&writer_);
  thread_act_port_array_t threads_for_task;
  mach_msg_type_number_t thread_count;
  int non_generator_thread_count;

  if (task_threads(crashing_task_, &threads_for_task, &thread_count))
    return false;

  // Don't include the generator thread
  if (handler_thread_ != MACH_PORT_NULL)
    non_generator_thread_count = thread_count - 1;
  else
    non_generator_thread_count = thread_count;
  if (!list.AllocateObjectAndArray(non_generator_thread_count,
                                   sizeof(MDRawThread)))
    return false;

  thread_list_stream->stream_type = MD_THREAD_LIST_STREAM;
  thread_list_stream->location = list.location();

  list.get()->number_of_threads = non_generator_thread_count;

  MDRawThread thread;
  int thread_idx = 0;

  for (unsigned int i = 0; i < thread_count; ++i) {
    memset(&thread, 0, sizeof(MDRawThread));

    if (threads_for_task[i] != handler_thread_) {
      if (!WriteThreadStream(threads_for_task[i], &thread))
        return false;

      list.CopyIndexAfterObject(thread_idx++, &thread, sizeof(MDRawThread));
    }
  }

  return true;
}

bool MinidumpGenerator::WriteMemoryListStream(
    MDRawDirectory *memory_list_stream) {
  TypedMDRVA<MDRawMemoryList> list(&writer_);

  // If the dump has an exception, include some memory around the
  // instruction pointer.
  const size_t kIPMemorySize = 256;  // bytes
  bool have_ip_memory = false;
  MDMemoryDescriptor ip_memory_d;
  if (exception_thread_ && exception_type_) {
    breakpad_thread_state_data_t state;
    mach_msg_type_number_t stateCount
      = static_cast<mach_msg_type_number_t>(sizeof(state));

    if (GetThreadState(exception_thread_, state, &stateCount)) {
      uint64_t ip = CurrentPCForStack(state);
      // Bound it to the upper and lower bounds of the region
      // it's contained within. If it's not in a known memory region,
      // don't bother trying to write it.
      mach_vm_address_t addr = static_cast<vm_address_t>(ip);
      mach_vm_size_t size;
      natural_t nesting_level = 0;
      vm_region_submap_info_64 info;
      mach_msg_type_number_t info_count = VM_REGION_SUBMAP_INFO_COUNT_64;
      vm_region_recurse_info_t recurse_info;
      recurse_info = reinterpret_cast<vm_region_recurse_info_t>(&info);

      kern_return_t ret =
        mach_vm_region_recurse(crashing_task_,
                               &addr,
                               &size,
                               &nesting_level,
                               recurse_info,
                               &info_count);
      if (ret == KERN_SUCCESS && ip >= addr && ip < (addr + size)) {
        // Try to get 128 bytes before and after the IP, but
        // settle for whatever's available.
        ip_memory_d.start_of_memory_range =
          std::max(uintptr_t(addr),
                   uintptr_t(ip - (kIPMemorySize / 2)));
        uintptr_t end_of_range = 
          std::min(uintptr_t(ip + (kIPMemorySize / 2)),
                   uintptr_t(addr + size));
        uintptr_t range_diff = end_of_range -
            static_cast<uintptr_t>(ip_memory_d.start_of_memory_range);
        ip_memory_d.memory.data_size = static_cast<uint32_t>(range_diff);
        have_ip_memory = true;
        // This needs to get appended to the list even though
        // the memory bytes aren't filled in yet so the entire
        // list can be written first. The memory bytes will get filled
        // in after the memory list is written.
        memory_blocks_.push_back(ip_memory_d);
      }
    }
  }

  // Now fill in the memory list and write it.
  size_t memory_count = memory_blocks_.size();
  if (!list.AllocateObjectAndArray(memory_count,
                                   sizeof(MDMemoryDescriptor)))
    return false;

  memory_list_stream->stream_type = MD_MEMORY_LIST_STREAM;
  memory_list_stream->location = list.location();

  list.get()->number_of_memory_ranges = static_cast<uint32_t>(memory_count);

  unsigned int i;
  for (i = 0; i < memory_count; ++i) {
    list.CopyIndexAfterObject(i, &memory_blocks_[i],
                              sizeof(MDMemoryDescriptor));
  }

  if (have_ip_memory) {
    // Now read the memory around the instruction pointer.
    UntypedMDRVA ip_memory(&writer_);
    if (!ip_memory.Allocate(ip_memory_d.memory.data_size))
      return false;

    if (dynamic_images_) {
      // Out-of-process.
      vector<uint8_t> memory;
      if (ReadTaskMemory(crashing_task_,
                         ip_memory_d.start_of_memory_range,
                         ip_memory_d.memory.data_size,
                         memory) != KERN_SUCCESS) {
        return false;
      }

      ip_memory.Copy(&memory[0], ip_memory_d.memory.data_size);
    } else {
      // In-process, just copy from local memory.
      ip_memory.Copy(
        reinterpret_cast<const void *>(ip_memory_d.start_of_memory_range),
        ip_memory_d.memory.data_size);
    }

    ip_memory_d.memory = ip_memory.location();
    // Write this again now that the data location is filled in.
    list.CopyIndexAfterObject(i - 1, &ip_memory_d,
                              sizeof(MDMemoryDescriptor));
  }

  return true;
}

bool
MinidumpGenerator::WriteExceptionStream(MDRawDirectory *exception_stream) {
  TypedMDRVA<MDRawExceptionStream> exception(&writer_);

  if (!exception.Allocate())
    return false;

  exception_stream->stream_type = MD_EXCEPTION_STREAM;
  exception_stream->location = exception.location();
  MDRawExceptionStream *exception_ptr = exception.get();
  exception_ptr->thread_id = exception_thread_;

  // This naming is confusing, but it is the proper translation from
  // mach naming to minidump naming.
  exception_ptr->exception_record.exception_code = exception_type_;
  exception_ptr->exception_record.exception_flags = exception_code_;

  breakpad_thread_state_data_t state;
  mach_msg_type_number_t state_count
      = static_cast<mach_msg_type_number_t>(sizeof(state));

  if (!GetThreadState(exception_thread_, state, &state_count))
    return false;

  if (!WriteContext(state, &exception_ptr->thread_context))
    return false;

  if (exception_type_ == EXC_BAD_ACCESS)
    exception_ptr->exception_record.exception_address = exception_subcode_;
  else
    exception_ptr->exception_record.exception_address = CurrentPCForStack(state);

  return true;
}

bool MinidumpGenerator::WriteSystemInfoStream(
    MDRawDirectory *system_info_stream) {
  TypedMDRVA<MDRawSystemInfo> info(&writer_);

  if (!info.Allocate())
    return false;

  system_info_stream->stream_type = MD_SYSTEM_INFO_STREAM;
  system_info_stream->location = info.location();

  // CPU Information
  uint32_t number_of_processors;
  size_t len = sizeof(number_of_processors);
  sysctlbyname("hw.ncpu", &number_of_processors, &len, NULL, 0);
  MDRawSystemInfo *info_ptr = info.get();

  switch (cpu_type_) {
#ifdef HAS_ARM_SUPPORT
    case CPU_TYPE_ARM:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_ARM;
      break;
#endif
#ifdef HAS_ARM64_SUPPORT
    case CPU_TYPE_ARM64:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_ARM64_OLD;
      break;
#endif
#ifdef HAS_PPC_SUPPORT
    case CPU_TYPE_POWERPC:
    case CPU_TYPE_POWERPC64:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_PPC;
      break;
#endif
#ifdef HAS_X86_SUPPORT
    case CPU_TYPE_I386:
    case CPU_TYPE_X86_64:
      if (cpu_type_ == CPU_TYPE_I386)
        info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_X86;
      else
        info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_AMD64;
#ifdef __i386__
      // ebx is used for PIC code, so we need
      // to preserve it.
#define cpuid(op,eax,ebx,ecx,edx)      \
  asm ("pushl %%ebx   \n\t"            \
       "cpuid         \n\t"            \
       "movl %%ebx,%1 \n\t"            \
       "popl %%ebx"                    \
       : "=a" (eax),                   \
         "=g" (ebx),                   \
         "=c" (ecx),                   \
         "=d" (edx)                    \
       : "0" (op))
#elif defined(__x86_64__)

#define cpuid(op,eax,ebx,ecx,edx)      \
  asm ("cpuid         \n\t"            \
       : "=a" (eax),                   \
         "=b" (ebx),                   \
         "=c" (ecx),                   \
         "=d" (edx)                    \
       : "0" (op))
#endif

#if defined(__i386__) || defined(__x86_64__)
      int unused, unused2;
      // get vendor id
      cpuid(0, unused, info_ptr->cpu.x86_cpu_info.vendor_id[0],
            info_ptr->cpu.x86_cpu_info.vendor_id[2],
            info_ptr->cpu.x86_cpu_info.vendor_id[1]);
      // get version and feature info
      cpuid(1, info_ptr->cpu.x86_cpu_info.version_information, unused, unused2,
            info_ptr->cpu.x86_cpu_info.feature_information);

      // family
      info_ptr->processor_level =
        (info_ptr->cpu.x86_cpu_info.version_information & 0xF00) >> 8;
      // 0xMMSS (Model, Stepping)
      info_ptr->processor_revision = static_cast<uint16_t>(
          (info_ptr->cpu.x86_cpu_info.version_information & 0xF) |
          ((info_ptr->cpu.x86_cpu_info.version_information & 0xF0) << 4));

      // decode extended model info
      if (info_ptr->processor_level == 0xF ||
          info_ptr->processor_level == 0x6) {
        info_ptr->processor_revision |=
          ((info_ptr->cpu.x86_cpu_info.version_information & 0xF0000) >> 4);
      }

      // decode extended family info
      if (info_ptr->processor_level == 0xF) {
        info_ptr->processor_level +=
          ((info_ptr->cpu.x86_cpu_info.version_information & 0xFF00000) >> 20);
      }

#endif  // __i386__ || __x86_64_
      break;
#endif  // HAS_X86_SUPPORT
    default:
      info_ptr->processor_architecture = MD_CPU_ARCHITECTURE_UNKNOWN;
      break;
  }

  info_ptr->number_of_processors = static_cast<uint8_t>(number_of_processors);
#if TARGET_OS_IPHONE
  info_ptr->platform_id = MD_OS_IOS;
#else
  info_ptr->platform_id = MD_OS_MAC_OS_X;
#endif  // TARGET_OS_IPHONE

  MDLocationDescriptor build_string_loc;

  if (!writer_.WriteString(build_string_, 0,
                           &build_string_loc))
    return false;

  info_ptr->csd_version_rva = build_string_loc.rva;
  info_ptr->major_version = os_major_version_;
  info_ptr->minor_version = os_minor_version_;
  info_ptr->build_number = os_build_number_;

  return true;
}

bool MinidumpGenerator::WriteModuleStream(unsigned int index,
                                          MDRawModule *module) {
  if (dynamic_images_) {
    // we're in a different process than the crashed process
    DynamicImage *image = dynamic_images_->GetImage(index);

    if (!image)
      return false;

    memset(module, 0, sizeof(MDRawModule));

    MDLocationDescriptor string_location;

    string name = image->GetFilePath();
    if (!writer_.WriteString(name.c_str(), 0, &string_location))
      return false;

    module->base_of_image = image->GetVMAddr() + image->GetVMAddrSlide();
    module->size_of_image = static_cast<uint32_t>(image->GetVMSize());
    module->module_name_rva = string_location.rva;

    // We'll skip the executable module, because they don't have
    // LC_ID_DYLIB load commands, and the crash processing server gets
    // version information from the Plist file, anyway.
    if (index != static_cast<uint32_t>(FindExecutableModule())) {
      module->version_info.signature = MD_VSFIXEDFILEINFO_SIGNATURE;
      module->version_info.struct_version |= MD_VSFIXEDFILEINFO_VERSION;
      // Convert MAC dylib version format, which is a 32 bit number, to the
      // format used by minidump.  The mac format is <16 bits>.<8 bits>.<8 bits>
      // so it fits nicely into the windows version with some massaging
      // The mapping is:
      //    1) upper 16 bits of MAC version go to lower 16 bits of product HI
      //    2) Next most significant 8 bits go to upper 16 bits of product LO
      //    3) Least significant 8 bits go to lower 16 bits of product LO
      uint32_t modVersion = image->GetVersion();
      module->version_info.file_version_hi = 0;
      module->version_info.file_version_hi = modVersion >> 16;
      module->version_info.file_version_lo |= (modVersion & 0xff00)  << 8;
      module->version_info.file_version_lo |= (modVersion & 0xff);
    }

    if (!WriteCVRecord(module, image->GetCPUType(), name.c_str(), false)) {
      return false;
    }
  } else {
    // Getting module info in the crashed process
    const breakpad_mach_header *header;
    header = (breakpad_mach_header*)_dyld_get_image_header(index);
    if (!header)
      return false;

#ifdef __LP64__
    assert(header->magic == MH_MAGIC_64);

    if(header->magic != MH_MAGIC_64)
      return false;
#else
    assert(header->magic == MH_MAGIC);

    if(header->magic != MH_MAGIC)
      return false;
#endif

    int cpu_type = header->cputype;
    unsigned long slide = _dyld_get_image_vmaddr_slide(index);
    const char* name = _dyld_get_image_name(index);
    const struct load_command *cmd =
        reinterpret_cast<const struct load_command *>(header + 1);

    memset(module, 0, sizeof(MDRawModule));

    for (unsigned int i = 0; cmd && (i < header->ncmds); i++) {
      if (cmd->cmd == LC_SEGMENT_ARCH) {

        const breakpad_mach_segment_command *seg =
            reinterpret_cast<const breakpad_mach_segment_command *>(cmd);

        if (!strcmp(seg->segname, "__TEXT")) {
          MDLocationDescriptor string_location;

          if (!writer_.WriteString(name, 0, &string_location))
            return false;

          module->base_of_image = seg->vmaddr + slide;
          module->size_of_image = static_cast<uint32_t>(seg->vmsize);
          module->module_name_rva = string_location.rva;

          bool in_memory = false;
#if TARGET_OS_IPHONE
          in_memory = true;
#endif
          if (!WriteCVRecord(module, cpu_type, name, in_memory))
            return false;

          return true;
        }
      }

      cmd = reinterpret_cast<struct load_command*>((char *)cmd + cmd->cmdsize);
    }
  }

  return true;
}

int MinidumpGenerator::FindExecutableModule() {
  if (dynamic_images_) {
    int index = dynamic_images_->GetExecutableImageIndex();

    if (index >= 0) {
      return index;
    }
  } else {
    int image_count = _dyld_image_count();
    const struct mach_header *header;

    for (int index = 0; index < image_count; ++index) {
      header = _dyld_get_image_header(index);

      if (header->filetype == MH_EXECUTE)
        return index;
    }
  }

  // failed - just use the first image
  return 0;
}

bool MinidumpGenerator::WriteCVRecord(MDRawModule *module, int cpu_type,
                                      const char *module_path, bool in_memory) {
  TypedMDRVA<MDCVInfoPDB70> cv(&writer_);

  // Only return the last path component of the full module path
  const char *module_name = strrchr(module_path, '/');

  // Increment past the slash
  if (module_name)
    ++module_name;
  else
    module_name = "<Unknown>";

  size_t module_name_length = strlen(module_name);

  if (!cv.AllocateObjectAndArray(module_name_length + 1, sizeof(uint8_t)))
    return false;

  if (!cv.CopyIndexAfterObject(0, module_name, module_name_length))
    return false;

  module->cv_record = cv.location();
  MDCVInfoPDB70 *cv_ptr = cv.get();
  cv_ptr->cv_signature = MD_CVINFOPDB70_SIGNATURE;
  cv_ptr->age = 0;

  // Get the module identifier
  unsigned char identifier[16];
  bool result = false;
  if (in_memory) {
    MacFileUtilities::MachoID macho(module_path,
        reinterpret_cast<void *>(module->base_of_image),
        static_cast<size_t>(module->size_of_image));
    result = macho.UUIDCommand(cpu_type, CPU_SUBTYPE_MULTIPLE, identifier);
    if (!result)
      result = macho.MD5(cpu_type, CPU_SUBTYPE_MULTIPLE, identifier);
  }

  if (!result) {
     FileID file_id(module_path);
     result = file_id.MachoIdentifier(cpu_type, CPU_SUBTYPE_MULTIPLE,
                                      identifier);
  }

  if (result) {
    cv_ptr->signature.data1 =
        static_cast<uint32_t>(identifier[0]) << 24 |
        static_cast<uint32_t>(identifier[1]) << 16 |
        static_cast<uint32_t>(identifier[2]) << 8 |
        static_cast<uint32_t>(identifier[3]);
    cv_ptr->signature.data2 =
        static_cast<uint16_t>(identifier[4] << 8) | identifier[5];
    cv_ptr->signature.data3 =
        static_cast<uint16_t>(identifier[6] << 8) | identifier[7];
    cv_ptr->signature.data4[0] = identifier[8];
    cv_ptr->signature.data4[1] = identifier[9];
    cv_ptr->signature.data4[2] = identifier[10];
    cv_ptr->signature.data4[3] = identifier[11];
    cv_ptr->signature.data4[4] = identifier[12];
    cv_ptr->signature.data4[5] = identifier[13];
    cv_ptr->signature.data4[6] = identifier[14];
    cv_ptr->signature.data4[7] = identifier[15];
  }

  return true;
}

bool MinidumpGenerator::WriteModuleListStream(
    MDRawDirectory *module_list_stream) {
  TypedMDRVA<MDRawModuleList> list(&writer_);

  uint32_t image_count = dynamic_images_ ?
      dynamic_images_->GetImageCount() :
      _dyld_image_count();

  if (!list.AllocateObjectAndArray(image_count, MD_MODULE_SIZE))
    return false;

  module_list_stream->stream_type = MD_MODULE_LIST_STREAM;
  module_list_stream->location = list.location();
  list.get()->number_of_modules = static_cast<uint32_t>(image_count);

  // Write out the executable module as the first one
  MDRawModule module;
  uint32_t executableIndex = FindExecutableModule();

  if (!WriteModuleStream(static_cast<unsigned>(executableIndex), &module)) {
    return false;
  }

  list.CopyIndexAfterObject(0, &module, MD_MODULE_SIZE);
  int destinationIndex = 1;  // Write all other modules after this one

  for (uint32_t i = 0; i < image_count; ++i) {
    if (i != executableIndex) {
      if (!WriteModuleStream(static_cast<unsigned>(i), &module)) {
        return false;
      }

      list.CopyIndexAfterObject(destinationIndex++, &module, MD_MODULE_SIZE);
    }
  }

  return true;
}

bool MinidumpGenerator::WriteMiscInfoStream(MDRawDirectory *misc_info_stream) {
  TypedMDRVA<MDRawMiscInfo> info(&writer_);

  if (!info.Allocate())
    return false;

  misc_info_stream->stream_type = MD_MISC_INFO_STREAM;
  misc_info_stream->location = info.location();

  MDRawMiscInfo *info_ptr = info.get();
  info_ptr->size_of_info = static_cast<uint32_t>(sizeof(MDRawMiscInfo));
  info_ptr->flags1 = MD_MISCINFO_FLAGS1_PROCESS_ID |
    MD_MISCINFO_FLAGS1_PROCESS_TIMES |
    MD_MISCINFO_FLAGS1_PROCESSOR_POWER_INFO;

  // Process ID
  info_ptr->process_id = getpid();

  // Times
  struct rusage usage;
  if (getrusage(RUSAGE_SELF, &usage) != -1) {
    // Omit the fractional time since the MDRawMiscInfo only wants seconds
    info_ptr->process_user_time =
        static_cast<uint32_t>(usage.ru_utime.tv_sec);
    info_ptr->process_kernel_time =
        static_cast<uint32_t>(usage.ru_stime.tv_sec);
  }
  int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID,
                 static_cast<int>(info_ptr->process_id) };
  uint mibsize = static_cast<uint>(sizeof(mib) / sizeof(mib[0]));
  struct kinfo_proc proc;
  size_t size = sizeof(proc);
  if (sysctl(mib, mibsize, &proc, &size, NULL, 0) == 0) {
    info_ptr->process_create_time =
        static_cast<uint32_t>(proc.kp_proc.p_starttime.tv_sec);
  }

  // Speed
  uint64_t speed;
  const uint64_t kOneMillion = 1000 * 1000;
  size = sizeof(speed);
  sysctlbyname("hw.cpufrequency_max", &speed, &size, NULL, 0);
  info_ptr->processor_max_mhz = static_cast<uint32_t>(speed / kOneMillion);
  info_ptr->processor_mhz_limit = static_cast<uint32_t>(speed / kOneMillion);
  size = sizeof(speed);
  sysctlbyname("hw.cpufrequency", &speed, &size, NULL, 0);
  info_ptr->processor_current_mhz = static_cast<uint32_t>(speed / kOneMillion);

  return true;
}

bool MinidumpGenerator::WriteBreakpadInfoStream(
    MDRawDirectory *breakpad_info_stream) {
  TypedMDRVA<MDRawBreakpadInfo> info(&writer_);

  if (!info.Allocate())
    return false;

  breakpad_info_stream->stream_type = MD_BREAKPAD_INFO_STREAM;
  breakpad_info_stream->location = info.location();
  MDRawBreakpadInfo *info_ptr = info.get();

  if (exception_thread_ && exception_type_) {
    info_ptr->validity = MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID |
                         MD_BREAKPAD_INFO_VALID_REQUESTING_THREAD_ID;
    info_ptr->dump_thread_id = handler_thread_;
    info_ptr->requesting_thread_id = exception_thread_;
  } else {
    info_ptr->validity = MD_BREAKPAD_INFO_VALID_DUMP_THREAD_ID;
    info_ptr->dump_thread_id = handler_thread_;
    info_ptr->requesting_thread_id = 0;
  }

  return true;
}

}  // namespace google_breakpad