1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// -*- mode: C++ -*-
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// cfi-assembler.h: Define CFISection, a class for creating properly
// (and improperly) formatted DWARF CFI data for unit tests.
#ifndef PROCESSOR_CFI_ASSEMBLER_H_
#define PROCESSOR_CFI_ASSEMBLER_H_
#include <string>
#include "common/dwarf/dwarf2enums.h"
#include "google_breakpad/common/breakpad_types.h"
#include "processor/test_assembler.h"
namespace google_breakpad {
using dwarf2reader::DwarfPointerEncoding;
using google_breakpad::TestAssembler::Endianness;
using google_breakpad::TestAssembler::Label;
using google_breakpad::TestAssembler::Section;
using std::string;
class CFISection: public Section {
public:
// CFI augmentation strings beginning with 'z', defined by the
// Linux/IA-64 C++ ABI, can specify interesting encodings for
// addresses appearing in FDE headers and call frame instructions (and
// for additional fields whose presence the augmentation string
// specifies). In particular, pointers can be specified to be relative
// to various base address: the start of the .text section, the
// location holding the address itself, and so on. These allow the
// frame data to be position-independent even when they live in
// write-protected pages. These variants are specified at the
// following two URLs:
//
// http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
// http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
//
// CFISection leaves the production of well-formed 'z'-augmented CIEs and
// FDEs to the user, but does provide EncodedPointer, to emit
// properly-encoded addresses for a given pointer encoding.
// EncodedPointer uses an instance of this structure to find the base
// addresses it should use; you can establish a default for all encoded
// pointers appended to this section with SetEncodedPointerBases.
struct EncodedPointerBases {
EncodedPointerBases() : cfi(), text(), data() { }
// The starting address of this CFI section in memory, for
// DW_EH_PE_pcrel. DW_EH_PE_pcrel pointers may only be used in data
// that has is loaded into the program's address space.
u_int64_t cfi;
// The starting address of this file's .text section, for DW_EH_PE_textrel.
u_int64_t text;
// The starting address of this file's .got or .eh_frame_hdr section,
// for DW_EH_PE_datarel.
u_int64_t data;
};
// Create a CFISection whose endianness is ENDIANNESS, and where
// machine addresses are ADDRESS_SIZE bytes long. If EH_FRAME is
// true, use the .eh_frame format, as described by the Linux
// Standards Base Core Specification, instead of the DWARF CFI
// format.
CFISection(Endianness endianness, size_t address_size,
bool eh_frame = false)
: Section(endianness), address_size_(address_size), eh_frame_(eh_frame),
pointer_encoding_(dwarf2reader::DW_EH_PE_absptr),
encoded_pointer_bases_(), entry_length_(NULL), in_fde_(false) {
// The 'start', 'Here', and 'Mark' members of a CFISection all refer
// to section offsets.
start() = 0;
}
// Return this CFISection's address size.
size_t AddressSize() const { return address_size_; }
// Return true if this CFISection uses the .eh_frame format, or
// false if it contains ordinary DWARF CFI data.
bool ContainsEHFrame() const { return eh_frame_; }
// Use ENCODING for pointers in calls to FDEHeader and EncodedPointer.
void SetPointerEncoding(DwarfPointerEncoding encoding) {
pointer_encoding_ = encoding;
}
// Use the addresses in BASES as the base addresses for encoded
// pointers in subsequent calls to FDEHeader or EncodedPointer.
// This function makes a copy of BASES.
void SetEncodedPointerBases(const EncodedPointerBases &bases) {
encoded_pointer_bases_ = bases;
}
// Append a Common Information Entry header to this section with the
// given values. If dwarf64 is true, use the 64-bit DWARF initial
// length format for the CIE's initial length. Return a reference to
// this section. You should call FinishEntry after writing the last
// instruction for the CIE.
//
// Before calling this function, you will typically want to use Mark
// or Here to make a label to pass to FDEHeader that refers to this
// CIE's position in the section.
CFISection &CIEHeader(u_int64_t code_alignment_factor,
int data_alignment_factor,
unsigned return_address_register,
u_int8_t version = 3,
const string &augmentation = "",
bool dwarf64 = false);
// Append a Frame Description Entry header to this section with the
// given values. If dwarf64 is true, use the 64-bit DWARF initial
// length format for the CIE's initial length. Return a reference to
// this section. You should call FinishEntry after writing the last
// instruction for the CIE.
//
// This function doesn't support entries that are longer than
// 0xffffff00 bytes. (The "initial length" is always a 32-bit
// value.) Nor does it support .debug_frame sections longer than
// 0xffffff00 bytes.
CFISection &FDEHeader(Label cie_pointer,
u_int64_t initial_location,
u_int64_t address_range,
bool dwarf64 = false);
// Note the current position as the end of the last CIE or FDE we
// started, after padding with DW_CFA_nops for alignment. This
// defines the label representing the entry's length, cited in the
// entry's header. Return a reference to this section.
CFISection &FinishEntry();
// Append the contents of BLOCK as a DW_FORM_block value: an
// unsigned LEB128 length, followed by that many bytes of data.
CFISection &Block(const string &block) {
ULEB128(block.size());
Append(block);
return *this;
}
// Append ADDRESS to this section, in the appropriate size and
// endianness. Return a reference to this section.
CFISection &Address(u_int64_t address) {
Section::Append(endianness(), address_size_, address);
return *this;
}
CFISection &Address(Label address) {
Section::Append(endianness(), address_size_, address);
return *this;
}
// Append ADDRESS to this section, using ENCODING and BASES. ENCODING
// defaults to this section's default encoding, established by
// SetPointerEncoding. BASES defaults to this section's bases, set by
// SetEncodedPointerBases. If the DW_EH_PE_indirect bit is set in the
// encoding, assume that ADDRESS is where the true address is stored.
// Return a reference to this section.
//
// (C++ doesn't let me use default arguments here, because I want to
// refer to members of *this in the default argument expression.)
CFISection &EncodedPointer(u_int64_t address) {
return EncodedPointer(address, pointer_encoding_, encoded_pointer_bases_);
}
CFISection &EncodedPointer(u_int64_t address, DwarfPointerEncoding encoding) {
return EncodedPointer(address, encoding, encoded_pointer_bases_);
}
CFISection &EncodedPointer(u_int64_t address, DwarfPointerEncoding encoding,
const EncodedPointerBases &bases);
// Restate some member functions, to keep chaining working nicely.
CFISection &Mark(Label *label) { Section::Mark(label); return *this; }
CFISection &D8(u_int8_t v) { Section::D8(v); return *this; }
CFISection &D16(u_int16_t v) { Section::D16(v); return *this; }
CFISection &D16(Label v) { Section::D16(v); return *this; }
CFISection &D32(u_int32_t v) { Section::D32(v); return *this; }
CFISection &D32(const Label &v) { Section::D32(v); return *this; }
CFISection &D64(u_int64_t v) { Section::D64(v); return *this; }
CFISection &D64(const Label &v) { Section::D64(v); return *this; }
CFISection &LEB128(long long v) { Section::LEB128(v); return *this; }
CFISection &ULEB128(u_int64_t v) { Section::ULEB128(v); return *this; }
private:
// A length value that we've appended to the section, but is not yet
// known. LENGTH is the appended value; START is a label referring
// to the start of the data whose length was cited.
struct PendingLength {
Label length;
Label start;
};
// The size of a machine address for the data in this section.
size_t address_size_;
// If true, we are generating a Linux .eh_frame section, instead of
// a standard DWARF .debug_frame section.
bool eh_frame_;
// The encoding to use for FDE pointers.
DwarfPointerEncoding pointer_encoding_;
// The base addresses to use when emitting encoded pointers.
EncodedPointerBases encoded_pointer_bases_;
// The length value for the current entry.
//
// Oddly, this must be dynamically allocated. Labels never get new
// values; they only acquire constraints on the value they already
// have, or assert if you assign them something incompatible. So
// each header needs truly fresh Label objects to cite in their
// headers and track their positions. The alternative is explicit
// destructor invocation and a placement new. Ick.
PendingLength *entry_length_;
// True if we are currently emitting an FDE --- that is, we have
// called FDEHeader but have not yet called FinishEntry.
bool in_fde_;
// If in_fde_ is true, this is its starting address. We use this for
// emitting DW_EH_PE_funcrel pointers.
u_int64_t fde_start_address_;
};
} // namespace google_breakpad
#endif // PROCESSOR_CFI_ASSEMBLER_H_
|