aboutsummaryrefslogtreecommitdiff
path: root/src/common/linux/dump_symbols.cc
blob: a52c13c8d24d8c055336e690d0e619fefb52d485 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <a.out.h>
#include <cstdarg>
#include <cstdlib>
#include <cstdio>
#include <cxxabi.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <link.h>
#include <sys/mman.h>
#include <stab.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>

#include <functional>
#include <list>
#include <vector>
#include <map>
#include <string.h>

#include "common/linux/dump_symbols.h"
#include "common/linux/file_id.h"
#include "common/linux/guid_creator.h"
#include "processor/scoped_ptr.h"

// This namespace contains helper functions.
namespace {

// Infomation of a line.
struct LineInfo {
  // The index into string table for the name of the source file which
  // this line belongs to.
  // Load from stab symbol.
  uint32_t source_name_index;
  // Offset from start of the function.
  // Load from stab symbol.
  ElfW(Off) rva_to_func;
  // Offset from base of the loading binary.
  ElfW(Off) rva_to_base;
  // Size of the line.
  // It is the difference of the starting address of the line and starting
  // address of the next N_SLINE, N_FUN or N_SO.
  uint32_t size;
  // Line number.
  uint32_t line_num;
  // Id of the source file for this line.
  int source_id;
};

typedef std::list<struct LineInfo> LineInfoList;

// Information of a function.
struct FuncInfo {
  // Name of the function.
  const char *name;
  // Offset from the base of the loading address.
  ElfW(Off) rva_to_base;
  // Virtual address of the function.
  // Load from stab symbol.
  ElfW(Addr) addr;
  // Size of the function.
  // It is the difference of the starting address of the function and starting
  // address of the next N_FUN or N_SO.
  uint32_t size;
  // Total size of stack parameters.
  uint32_t stack_param_size;
  // Line information array.
  LineInfoList line_info;
};

typedef std::list<struct FuncInfo> FuncInfoList;

// Information of a source file.
struct SourceFileInfo {
  // Name string index into the string table.
  uint32_t name_index;
  // Name of the source file.
  const char *name;
  // Starting address of the source file.
  ElfW(Addr) addr;
  // Id of the source file.
  int source_id;
  // Functions information.
  FuncInfoList func_info;
};

// A simple std::list of pointers to SourceFileInfo structures, that
// owns the structures pointed to: destroying the list destroys them,
// as well.
class SourceFileInfoList : public std::list<SourceFileInfo *> {
 public:
  ~SourceFileInfoList() {
    for (iterator it = this->begin(); it != this->end(); it++)
      delete *it;
  }
};

// Information of a symbol table.
// This is the root of all types of symbol.
struct SymbolInfo {
  SourceFileInfoList source_file_info;

  // An array of some addresses at which a file boundary occurs.
  //
  // The STABS information describing a compilation unit gives the
  // unit's start address, but not its ending address or size.  Those
  // must be inferred by finding the start address of the next file.
  // For the last compilation unit, or when one compilation unit ends
  // before the next one starts, STABS includes an N_SO entry whose
  // filename is the empty string; such an entry's address serves
  // simply to mark the end of the preceding compilation unit.  Rather
  // than create FuncInfoList for such entries, we record their
  // addresses here.  These are not necessarily sorted.
  std::vector<ElfW(Addr)> file_boundaries;

  // The next source id for newly found source file.
  int next_source_id;
};

// Stab section name.
static const char *kStabName = ".stab";

// Demangle using abi call.
// Older GCC may not support it.
static std::string Demangle(const char *mangled) {
  int status = 0;
  char *demangled = abi::__cxa_demangle(mangled, NULL, NULL, &status);
  if (status == 0 && demangled != NULL) {
    std::string str(demangled);
    free(demangled);
    return str;
  }
  return std::string(mangled);
}

// Fix offset into virtual address by adding the mapped base into offsets.
// Make life easier when want to find something by offset.
static void FixAddress(void *obj_base) {
  ElfW(Word) base = reinterpret_cast<ElfW(Word)>(obj_base);
  ElfW(Ehdr) *elf_header = static_cast<ElfW(Ehdr) *>(obj_base);
  elf_header->e_phoff += base;
  elf_header->e_shoff += base;
  ElfW(Shdr) *sections = reinterpret_cast<ElfW(Shdr) *>(elf_header->e_shoff);
  for (int i = 0; i < elf_header->e_shnum; ++i)
    sections[i].sh_offset += base;
}

// Find the prefered loading address of the binary.
static ElfW(Addr) GetLoadingAddress(const ElfW(Phdr) *program_headers,
                                    int nheader) {
  for (int i = 0; i < nheader; ++i) {
    const ElfW(Phdr) &header = program_headers[i];
    // For executable, it is the PT_LOAD segment with offset to zero.
    if (header.p_type == PT_LOAD &&
        header.p_offset == 0)
      return header.p_vaddr;
  }
  // For other types of ELF, return 0.
  return 0;
}

static bool IsValidElf(const ElfW(Ehdr) *elf_header) {
  return memcmp(elf_header, ELFMAG, SELFMAG) == 0;
}

static const ElfW(Shdr) *FindSectionByName(const char *name,
                                           const ElfW(Shdr) *sections,
                                           const ElfW(Shdr) *strtab,
                                           int nsection) {
  assert(name != NULL);
  assert(sections != NULL);
  assert(nsection > 0);

  int name_len = strlen(name);
  if (name_len == 0)
    return NULL;

  for (int i = 0; i < nsection; ++i) {
    const char *section_name =
      (char*)(strtab->sh_offset + sections[i].sh_name);
    if (!strncmp(name, section_name, name_len))
      return sections + i;
  }
  return NULL;
}

// TODO(liuli): Computer the stack parameter size.
// Expect parameter variables are immediately following the N_FUN symbol.
// Will need to parse the type information to get a correct size.
static int LoadStackParamSize(struct nlist *list,
                              struct nlist *list_end,
                              struct FuncInfo *func_info) {
  struct nlist *cur_list = list;
  assert(cur_list->n_type == N_FUN);
  ++cur_list;
  int step = 1;
  while (cur_list < list_end && cur_list->n_type == N_PSYM) {
    ++cur_list;
    ++step;
  }
  func_info->stack_param_size = 0;
  return step;
}

static int LoadLineInfo(struct nlist *list,
                        struct nlist *list_end,
                        const struct SourceFileInfo &source_file_info,
                        struct FuncInfo *func_info) {
  struct nlist *cur_list = list;
  // Records which source file the following lines belongs. Default
  // to the file we are handling. This helps us handling inlined source.
  // When encountering N_SOL, we will change this to the source file
  // specified by N_SOL.
  int current_source_name_index = source_file_info.name_index;
  do {
    // Skip non line information.
    while (cur_list < list_end && cur_list->n_type != N_SLINE) {
      // Only exit when got another function, or source file.
      if (cur_list->n_type == N_FUN || cur_list->n_type == N_SO)
        return cur_list - list;
      // N_SOL means source lines following it will be from
      // another source file.
      if (cur_list->n_type == N_SOL) {
        if (cur_list->n_un.n_strx > 0 &&
            cur_list->n_un.n_strx != current_source_name_index) {
          // The following lines will be from this source file.
          current_source_name_index = cur_list->n_un.n_strx;
        }
      }
      ++cur_list;
    }
    struct LineInfo line;
    while (cur_list < list_end && cur_list->n_type == N_SLINE) {
      line.source_name_index = current_source_name_index;
      line.rva_to_func = cur_list->n_value;
      // n_desc is a signed short
      line.line_num = (unsigned short)cur_list->n_desc;
      // Don't set it here.
      // Will be processed in later pass.
      line.source_id = -1;
      // Compiler worries about uninitialized fields in copy for 'push_back'.
      line.size = 0;
      line.rva_to_base = 0;
      func_info->line_info.push_back(line);
      ++cur_list;
    }
  } while (list < list_end);

  return cur_list - list;
}

static int LoadFuncSymbols(struct nlist *list,
                           struct nlist *list_end,
                           const ElfW(Shdr) *stabstr_section,
                           struct SourceFileInfo *source_file_info) {
  struct nlist *cur_list = list;
  assert(cur_list->n_type == N_SO);
  ++cur_list;
  source_file_info->func_info.clear();
  while (cur_list < list_end) {
    // Go until the function symbol.
    while (cur_list < list_end && cur_list->n_type != N_FUN) {
      if (cur_list->n_type == N_SO) {
        return cur_list - list;
      }
      ++cur_list;
      continue;
    }
    if (cur_list->n_type == N_FUN) {
      struct FuncInfo func_info;
      func_info.name =
        reinterpret_cast<char *>(cur_list->n_un.n_strx +
                                 stabstr_section->sh_offset);
      func_info.addr = cur_list->n_value;
      func_info.rva_to_base = 0;
      func_info.size = 0;
      func_info.stack_param_size = 0;

      // Stack parameter size.
      cur_list += LoadStackParamSize(cur_list, list_end, &func_info);
      // Line info.
      cur_list += LoadLineInfo(cur_list,
                               list_end,
                               *source_file_info,
                               &func_info);

      // Functions in this module should have address bigger than the module
      // startring address.
      // There maybe a lot of duplicated entry for a function in the symbol,
      // only one of them can met this.
      if (func_info.addr >= source_file_info->addr) {
        source_file_info->func_info.push_back(func_info);
      }
    }
  }
  return cur_list - list;
}

// Add included file information.
// Also fix the source id for the line info.
static void AddIncludedFiles(struct SymbolInfo *symbols,
                             const ElfW(Shdr) *stabstr_section) {
  // A map taking an offset into the string table to the SourceFileInfo
  // structure whose name is at that offset.  LineInfo entries contain these
  // offsets; we use this map to pair them up with their source files.
  typedef std::map<unsigned int, struct SourceFileInfo *> FileByOffsetMap;
  FileByOffsetMap index_to_file;

  // Populate index_to_file with the source files we have now.
  for (SourceFileInfoList::iterator source_file_it = 
	 symbols->source_file_info.begin();
       source_file_it != symbols->source_file_info.end();
       ++source_file_it) {
    index_to_file[(*source_file_it)->name_index] = *source_file_it;
  }

  for (SourceFileInfoList::iterator source_file_it =
	 symbols->source_file_info.begin();
       source_file_it != symbols->source_file_info.end();
       ++source_file_it) {
    struct SourceFileInfo &source_file = **source_file_it;

    for (FuncInfoList::iterator func_info_it = source_file.func_info.begin(); 
	 func_info_it != source_file.func_info.end();
	 ++func_info_it) {
      struct FuncInfo &func_info = *func_info_it;

      for (LineInfoList::iterator line_info_it = func_info.line_info.begin(); 
	   line_info_it != func_info.line_info.end(); ++line_info_it) {
        struct LineInfo &line_info = *line_info_it;

        assert(line_info.source_name_index > 0);
        assert(source_file.name_index > 0);

        // Check if the line belongs to the source file by comparing the
        // name index into string table.
        if (line_info.source_name_index != source_file.name_index) {
          // This line is not from the current source file, check if this
          // source file has been added before.
          struct SourceFileInfo **file_map_entry
            = &index_to_file[line_info.source_name_index];
          if (! *file_map_entry) {
            // Got a new included file.
            // Those included files don't have address or line information.
            SourceFileInfo *new_file = new(SourceFileInfo);
            new_file->name_index = line_info.source_name_index;
            new_file->name = reinterpret_cast<char *>(new_file->name_index
                                                 + stabstr_section->sh_offset);
            new_file->addr = 0;
            new_file->source_id = symbols->next_source_id++;
            line_info.source_id = new_file->source_id;
            symbols->source_file_info.push_back(new_file);
            *file_map_entry = new_file;
          } else {
            // The file has been added.
            line_info.source_id = (*file_map_entry)->source_id;
          }
        } else {
          // The line belongs to the file.
          line_info.source_id = source_file.source_id;
        }
      }  // for each line.
    }  // for each function.
  } // for each source file.

}

// Compute size and rva information based on symbols loaded from stab section.
static bool ComputeSizeAndRVA(ElfW(Addr) loading_addr,
                              struct SymbolInfo *symbols) {
  SourceFileInfoList::iterator file_it;
  FuncInfoList::iterator func_it;
  LineInfoList::iterator line_it;

  // A table of all the addresses at which files and functions start
  // or end.  We build this from the file boundary list and our lists
  // of files and functions, sort it, and then use it to find the ends
  // of functions and source lines for which we have no size
  // information.
  std::vector<ElfW(Addr)> boundaries = symbols->file_boundaries;
  for (file_it = symbols->source_file_info.begin();
       file_it != symbols->source_file_info.end(); file_it++) {
    boundaries.push_back((*file_it)->addr);
    for (func_it = (*file_it)->func_info.begin();
         func_it != (*file_it)->func_info.end(); func_it++)
      boundaries.push_back(func_it->addr);
  }
  std::sort(boundaries.begin(), boundaries.end());

  int no_next_addr_count = 0;
  for (file_it = symbols->source_file_info.begin();
       file_it != symbols->source_file_info.end(); file_it++) {
    for (func_it = (*file_it)->func_info.begin();
         func_it != (*file_it)->func_info.end(); func_it++) {
      struct FuncInfo &func_info = *func_it;
      assert(func_info.addr >= loading_addr);
      func_info.rva_to_base = func_info.addr - loading_addr;
      func_info.size = 0;
      std::vector<ElfW(Addr)>::iterator boundary
        = std::upper_bound(boundaries.begin(), boundaries.end(),
                           func_info.addr);
      ElfW(Addr) next_addr = (boundary == boundaries.end()) ? 0 : *boundary;
      // I've noticed functions with an address bigger than any other functions
      // and source files modules, this is probably the last function in the
      // module, due to limitions of Linux stab symbol, it is impossible to get
      // the exact size of this kind of function, thus we give it a default
      // very big value. This should be safe since this is the last function.
      // But it is a ugly hack.....
      // The following code can reproduce the case:
      // template<class T>
      // void Foo(T value) {
      // }
      //
      // int main(void) {
      //   Foo(10);
      //   Foo(std::string("hello"));
      //   return 0;
      // }
      // TODO(liuli): Find a better solution.
      static const int kDefaultSize = 0x10000000;
      if (next_addr != 0) {
        func_info.size = next_addr - func_info.addr;
      } else {
        if (no_next_addr_count > 1) {
          fprintf(stderr, "Got more than one funtion without the \
                  following symbol. Igore this function.\n");
          fprintf(stderr, "The dumped symbol may not correct.\n");
          assert(!"This should not happen!\n");
          func_info.size = 0;
          continue;
        }

        no_next_addr_count++;
        func_info.size = kDefaultSize;
      }
      // Compute line size.
      for (line_it = func_info.line_info.begin(); 
	   line_it != func_info.line_info.end(); line_it++) {
        struct LineInfo &line_info = *line_it;
	LineInfoList::iterator next_line_it = line_it;
	next_line_it++;
        line_info.size = 0;
        if (next_line_it != func_info.line_info.end()) {
          line_info.size =
            next_line_it->rva_to_func - line_info.rva_to_func;
        } else {
          // The last line in the function.
          // If we can find a function or source file symbol immediately
          // following the line, we can get the size of the line by computing
          // the difference of the next address to the starting address of this
          // line.
          // Otherwise, we need to set a default big enough value. This occurs
          // mostly because the this function is the last one in the module.
          if (next_addr != 0) {
            ElfW(Off) next_addr_offset = next_addr - func_info.addr;
            line_info.size = next_addr_offset - line_info.rva_to_func;
          } else {
            line_info.size = kDefaultSize;
          }
        }
        line_info.rva_to_base = line_info.rva_to_func + func_info.rva_to_base;
      }  // for each line.
    }  // for each function.
  } // for each source file.
  return true;
}

static bool LoadSymbols(const ElfW(Shdr) *stab_section,
                        const ElfW(Shdr) *stabstr_section,
                        ElfW(Addr) loading_addr,
                        struct SymbolInfo *symbols) {
  if (stab_section == NULL || stabstr_section == NULL)
    return false;

  struct nlist *lists =
    reinterpret_cast<struct nlist *>(stab_section->sh_offset);
  int nstab = stab_section->sh_size / sizeof(struct nlist);
  // First pass, load all symbols from the object file.
  for (int i = 0; i < nstab; ) {
    int step = 1;
    struct nlist *cur_list = lists + i;
    if (cur_list->n_type == N_SO) {
      if (cur_list->n_un.n_strx) {
        struct SourceFileInfo *source_file_info = new SourceFileInfo;
        source_file_info->name_index = cur_list->n_un.n_strx;
        source_file_info->name = reinterpret_cast<char *>(cur_list->n_un.n_strx
                                                 + stabstr_section->sh_offset);
        source_file_info->addr = cur_list->n_value;
        if (strchr(source_file_info->name, '.'))
          source_file_info->source_id = symbols->next_source_id++;
        else
          source_file_info->source_id = -1;
        step = LoadFuncSymbols(cur_list, lists + nstab,
                               stabstr_section, source_file_info);
        symbols->source_file_info.push_back(source_file_info);
      } else {
        // N_SO entries with no name mark file boundary addresses.
        symbols->file_boundaries.push_back(cur_list->n_value);
      }
    }
    i += step;
  }

  // Second pass, compute the size of functions and lines.
  if (ComputeSizeAndRVA(loading_addr, symbols)) {
    // Third pass, check for included source code, especially for header files.
    // Until now, we only have compiling unit information, but they can
    // have code from include files, add them here.
    AddIncludedFiles(symbols, stabstr_section);
    return true;
  }
  return false;
}

static bool LoadSymbols(ElfW(Ehdr) *elf_header, struct SymbolInfo *symbols) {
  // Translate all offsets in section headers into address.
  FixAddress(elf_header);
  ElfW(Addr) loading_addr = GetLoadingAddress(
      reinterpret_cast<ElfW(Phdr) *>(elf_header->e_phoff),
      elf_header->e_phnum);

  const ElfW(Shdr) *sections =
    reinterpret_cast<ElfW(Shdr) *>(elf_header->e_shoff);
  const ElfW(Shdr) *strtab = sections + elf_header->e_shstrndx;
  const ElfW(Shdr) *stab_section =
    FindSectionByName(kStabName, sections, strtab, elf_header->e_shnum);
  if (stab_section == NULL) {
    fprintf(stderr, "Stab section not found.\n");
    return false;
  }
  const ElfW(Shdr) *stabstr_section = stab_section->sh_link + sections;

  // Load symbols.
  return LoadSymbols(stab_section, stabstr_section, loading_addr, symbols);
}

static bool WriteModuleInfo(FILE *file,
                            ElfW(Half) arch,
                            const std::string &obj_file) {
  const char *arch_name = NULL;
  if (arch == EM_386)
    arch_name = "x86";
  else if (arch == EM_X86_64)
    arch_name = "x86_64";
  else
    return false;

  unsigned char identifier[16];
  google_breakpad::FileID file_id(obj_file.c_str());
  if (file_id.ElfFileIdentifier(identifier)) {
    char identifier_str[40];
    file_id.ConvertIdentifierToString(identifier,
                                      identifier_str, sizeof(identifier_str));
    char id_no_dash[40];
    int id_no_dash_len = 0;
    memset(id_no_dash, 0, sizeof(id_no_dash));
    for (int i = 0; identifier_str[i] != '\0'; ++i)
      if (identifier_str[i] != '-')
        id_no_dash[id_no_dash_len++] = identifier_str[i];
    // Add an extra "0" by the end.
    id_no_dash[id_no_dash_len++] = '0';
    std::string filename = obj_file;
    size_t slash_pos = obj_file.find_last_of("/");
    if (slash_pos != std::string::npos)
      filename = obj_file.substr(slash_pos + 1);
    return 0 <= fprintf(file, "MODULE Linux %s %s %s\n", arch_name,
                        id_no_dash, filename.c_str());
  }
  return false;
}

static bool WriteSourceFileInfo(FILE *file, const struct SymbolInfo &symbols) {
  for (SourceFileInfoList::const_iterator it =
	 symbols.source_file_info.begin();
       it != symbols.source_file_info.end(); it++) {
    if ((*it)->source_id != -1) {
      const char *name = (*it)->name;
      if (0 > fprintf(file, "FILE %d %s\n", (*it)->source_id, name))
        return false;
    }
  }
  return true;
}

static bool WriteOneFunction(FILE *file,
                             const struct FuncInfo &func_info){
  // Discard the ending part of the name.
  std::string func_name(func_info.name);
  std::string::size_type last_colon = func_name.find_last_of(':');
  if (last_colon != std::string::npos)
    func_name = func_name.substr(0, last_colon);
  func_name = Demangle(func_name.c_str());

  if (func_info.size <= 0)
    return true;

  if (0 <= fprintf(file, "FUNC %lx %lx %d %s\n",
                   (unsigned long) func_info.rva_to_base,
                   (unsigned long) func_info.size,
                   func_info.stack_param_size,
                   func_name.c_str())) {
    for (LineInfoList::const_iterator it = func_info.line_info.begin();
	 it != func_info.line_info.end(); it++) {
      const struct LineInfo &line_info = *it;
      if (0 > fprintf(file, "%lx %lx %d %d\n",
                      (unsigned long) line_info.rva_to_base,
                      (unsigned long) line_info.size,
                      line_info.line_num,
                      line_info.source_id))
        return false;
    }
    return true;
  }
  return false;
}

static bool WriteFunctionInfo(FILE *file, const struct SymbolInfo &symbols) {
  for (SourceFileInfoList::const_iterator it =
	 symbols.source_file_info.begin();
       it != symbols.source_file_info.end(); it++) {
    const struct SourceFileInfo &file_info = **it;
    for (FuncInfoList::const_iterator fiIt = file_info.func_info.begin(); 
	 fiIt != file_info.func_info.end(); fiIt++) {
      const struct FuncInfo &func_info = *fiIt;
      if (!WriteOneFunction(file, func_info))
        return false;
    }
  }
  return true;
}

static bool DumpStabSymbols(FILE *file, const struct SymbolInfo &symbols) {
  return WriteSourceFileInfo(file, symbols) &&
    WriteFunctionInfo(file, symbols);
}

//
// FDWrapper
//
// Wrapper class to make sure opened file is closed.
//
class FDWrapper {
 public:
  explicit FDWrapper(int fd) :
    fd_(fd) {
    }
  ~FDWrapper() {
    if (fd_ != -1)
      close(fd_);
  }
  int get() {
    return fd_;
  }
  int release() {
    int fd = fd_;
    fd_ = -1;
    return fd;
  }
 private:
  int fd_;
};

//
// MmapWrapper
//
// Wrapper class to make sure mapped regions are unmapped.
//
class MmapWrapper {
  public:
   MmapWrapper(void *mapped_address, size_t mapped_size) :
     base_(mapped_address), size_(mapped_size) {
   }
   ~MmapWrapper() {
     if (base_ != NULL) {
       assert(size_ > 0);
       munmap(base_, size_);
     }
   }
   void release() {
     base_ = NULL;
     size_ = 0;
   }

  private:
   void *base_;
   size_t size_;
};

}  // namespace

namespace google_breakpad {

bool DumpSymbols::WriteSymbolFile(const std::string &obj_file,
                                  FILE *sym_file) {
  int obj_fd = open(obj_file.c_str(), O_RDONLY);
  if (obj_fd < 0)
    return false;
  FDWrapper obj_fd_wrapper(obj_fd);
  struct stat st;
  if (fstat(obj_fd, &st) != 0 && st.st_size <= 0)
    return false;
  void *obj_base = mmap(NULL, st.st_size,
                        PROT_READ | PROT_WRITE, MAP_PRIVATE, obj_fd, 0);
  if (obj_base == MAP_FAILED)
    return false;
  MmapWrapper map_wrapper(obj_base, st.st_size);
  ElfW(Ehdr) *elf_header = reinterpret_cast<ElfW(Ehdr) *>(obj_base);
  if (!IsValidElf(elf_header))
    return false;
  struct SymbolInfo symbols;
  symbols.next_source_id = 0;

  if (!LoadSymbols(elf_header, &symbols))
     return false;
  // Write to symbol file.
  if (WriteModuleInfo(sym_file, elf_header->e_machine, obj_file) &&
      DumpStabSymbols(sym_file, symbols))
    return true;

  return false;
}

}  // namespace google_breakpad