1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
// Copyright 2013 Google Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This contains a suite of tools for transforming symbol information when
// when that information has been extracted from a PDB containing OMAP
// information.
// OMAP information is a lightweight description of a mapping between two
// address spaces. It consists of two streams, each of them a vector 2-tuples.
// The OMAPTO stream contains tuples of the form
//
// (RVA in transformed image, RVA in original image)
//
// while the OMAPFROM stream contains tuples of the form
//
// (RVA in original image, RVA in transformed image)
//
// The entries in each vector are sorted by the first value of the tuple, and
// the lengths associated with a mapping are implicit as the distance between
// two successive addresses in the vector.
// Consider a trivial 10-byte function described by the following symbol:
//
// Function: RVA 0x00001000, length 10, "foo"
//
// Now consider the same function, but with 5-bytes of instrumentation injected
// at offset 5. The OMAP streams describing this would look like:
//
// OMAPTO : [ [0x00001000, 0x00001000],
// [0x00001005, 0xFFFFFFFF],
// [0x0000100a, 0x00001005] ]
// OMAPFROM: [ [0x00001000, 0x00001000],
// [0x00001005, 0x0000100a] ]
//
// In this case the injected code has been marked as not originating in the
// source image, and thus it will have no symbol information at all. However,
// the injected code may also be associated with an original address range;
// for example, when prepending instrumentation to a basic block the
// instrumentation can be labelled as originating from the same source BB such
// that symbol resolution will still find the appropriate source code line
// number. In this case the OMAP stream would look like:
//
// OMAPTO : [ [0x00001000, 0x00001000],
// [0x00001005, 0x00001005],
// [0x0000100a, 0x00001005] ]
// OMAPFROM: [ [0x00001000, 0x00001000],
// [0x00001005, 0x0000100a] ]
//
// Suppose we asked DIA to lookup the symbol at location 0x0000100a of the
// instrumented image. It would first run this through the OMAPTO table and
// translate that address to 0x00001005. It would then lookup the symbol
// at that address and return the symbol for the function "foo". This is the
// correct result.
//
// However, if we query DIA for the length and address of the symbol it will
// tell us that it has length 10 and is at RVA 0x00001000. The location is
// correct, but the length doesn't take into account the 5-bytes of injected
// code. Symbol resolution works (starting from an instrumented address,
// mapping to an original address, and looking up a symbol), but the symbol
// metadata is incorrect.
//
// If we dump the symbols using DIA they will have their addresses
// appropriately transformed and reflect positions in the instrumented image.
// However, if we try to do a lookup using those symbols resolution can fail.
// For example, the address 0x0000100a will not map to the symbol for "foo",
// because DIA tells us it is at location 0x00001000 (correct) with length
// 10 (incorrect). The problem is one of order of operations: in this case
// we're attempting symbol resolution by looking up an instrumented address
// in the table of translated symbols.
//
// One way to handle this is to dump the OMAP information as part of the
// breakpad symbols. This requires the rest of the toolchain to be aware of
// OMAP information and to use it when present prior to performing lookup. The
// other option is to properly transform the symbols (updating length as well as
// position) so that resolution will work as expected for translated addresses.
// This is transparent to the rest of the toolchain.
#include "common/windows/omap.h"
#include <atlbase.h>
#include <algorithm>
#include <cassert>
#include <set>
#include "common/windows/dia_util.h"
namespace google_breakpad {
namespace {
static const wchar_t kOmapToDebugStreamName[] = L"OMAPTO";
static const wchar_t kOmapFromDebugStreamName[] = L"OMAPFROM";
// Dependending on where this is used in breakpad we sometimes get min/max from
// windef, and other times from algorithm. To get around this we simply
// define our own min/max functions.
template<typename T>
const T& Min(const T& t1, const T& t2) { return t1 < t2 ? t1 : t2; }
template<typename T>
const T& Max(const T& t1, const T& t2) { return t1 > t2 ? t1 : t2; }
// It makes things more readable to have two different OMAP types. We cast
// normal OMAPs into these. They must be the same size as the OMAP structure
// for this to work, hence the static asserts.
struct OmapOrigToTran {
DWORD rva_original;
DWORD rva_transformed;
};
struct OmapTranToOrig {
DWORD rva_transformed;
DWORD rva_original;
};
static_assert(sizeof(OmapOrigToTran) == sizeof(OMAP),
"OmapOrigToTran must have same size as OMAP.");
static_assert(sizeof(OmapTranToOrig) == sizeof(OMAP),
"OmapTranToOrig must have same size as OMAP.");
typedef std::vector<OmapOrigToTran> OmapFromTable;
typedef std::vector<OmapTranToOrig> OmapToTable;
// Used for sorting and searching through a Mapping.
bool MappedRangeOriginalLess(const MappedRange& lhs, const MappedRange& rhs) {
if (lhs.rva_original < rhs.rva_original)
return true;
if (lhs.rva_original > rhs.rva_original)
return false;
return lhs.length < rhs.length;
}
bool MappedRangeMappedLess(const MappedRange& lhs, const MappedRange& rhs) {
if (lhs.rva_transformed < rhs.rva_transformed)
return true;
if (lhs.rva_transformed > rhs.rva_transformed)
return false;
return lhs.length < rhs.length;
}
// Used for searching through the EndpointIndexMap.
bool EndpointIndexLess(const EndpointIndex& ei1, const EndpointIndex& ei2) {
return ei1.endpoint < ei2.endpoint;
}
// Finds the debug stream with the given |name| in the given |session|, and
// populates |table| with its contents. Casts the data directly into OMAP
// structs.
bool FindAndLoadOmapTable(const wchar_t* name,
IDiaSession* session,
OmapTable* table) {
assert(name != NULL);
assert(session != NULL);
assert(table != NULL);
CComPtr<IDiaEnumDebugStreamData> stream;
if (!FindDebugStream(name, session, &stream))
return false;
assert(stream.p != NULL);
LONG count = 0;
if (FAILED(stream->get_Count(&count))) {
fprintf(stderr, "IDiaEnumDebugStreamData::get_Count failed for stream "
"\"%ws\"\n", name);
return false;
}
// Get the length of the stream in bytes.
DWORD bytes_read = 0;
ULONG count_read = 0;
if (FAILED(stream->Next(count, 0, &bytes_read, NULL, &count_read))) {
fprintf(stderr, "IDiaEnumDebugStreamData::Next failed while reading "
"length of stream \"%ws\"\n", name);
return false;
}
// Ensure it's consistent with the OMAP data type.
DWORD bytes_expected = count * sizeof(OmapTable::value_type);
if (count * sizeof(OmapTable::value_type) != bytes_read) {
fprintf(stderr, "DIA debug stream \"%ws\" has an unexpected length", name);
return false;
}
// Read the table.
table->resize(count);
bytes_read = 0;
count_read = 0;
if (FAILED(stream->Next(count, bytes_expected, &bytes_read,
reinterpret_cast<BYTE*>(&table->at(0)),
&count_read))) {
fprintf(stderr, "IDiaEnumDebugStreamData::Next failed while reading "
"data from stream \"%ws\"\n", name);
return false;
}
return true;
}
// This determines the original image length by looking through the segment
// table.
bool GetOriginalImageLength(IDiaSession* session, DWORD* image_length) {
assert(session != NULL);
assert(image_length != NULL);
CComPtr<IDiaEnumSegments> enum_segments;
if (!FindTable(session, &enum_segments))
return false;
assert(enum_segments.p != NULL);
DWORD temp_image_length = 0;
CComPtr<IDiaSegment> segment;
ULONG fetched = 0;
while (SUCCEEDED(enum_segments->Next(1, &segment, &fetched)) &&
fetched == 1) {
assert(segment.p != NULL);
DWORD rva = 0;
DWORD length = 0;
DWORD frame = 0;
if (FAILED(segment->get_relativeVirtualAddress(&rva)) ||
FAILED(segment->get_length(&length)) ||
FAILED(segment->get_frame(&frame))) {
fprintf(stderr, "Failed to get basic properties for IDiaSegment\n");
return false;
}
if (frame > 0) {
DWORD segment_end = rva + length;
if (segment_end > temp_image_length)
temp_image_length = segment_end;
}
segment.Release();
}
*image_length = temp_image_length;
return true;
}
// Detects regions of the original image that have been removed in the
// transformed image, and sets the 'removed' property on all mapped ranges
// immediately preceding a gap. The mapped ranges must be sorted by
// 'rva_original'.
void FillInRemovedLengths(Mapping* mapping) {
assert(mapping != NULL);
// Find and fill gaps. We do this with two sweeps. We first sweep forward
// looking for gaps. When we identify a gap we then sweep forward with a
// second scan and set the 'removed' property for any intervals that
// immediately precede the gap.
//
// Gaps are typically between two successive intervals, but not always:
//
// Range 1: ---------------
// Range 2: -------
// Range 3: -------------
// Gap : ******
//
// In the above example the gap is between range 1 and range 3. A forward
// sweep finds the gap, and a second forward sweep identifies that range 1
// immediately precedes the gap and sets its 'removed' property.
size_t fill = 0;
DWORD rva_front = 0;
for (size_t find = 0; find < mapping->size(); ++find) {
#ifndef NDEBUG
// We expect the mapped ranges to be sorted by 'rva_original'.
if (find > 0) {
assert(mapping->at(find - 1).rva_original <=
mapping->at(find).rva_original);
}
#endif
if (rva_front < mapping->at(find).rva_original) {
// We've found a gap. Fill it in by setting the 'removed' property for
// any affected intervals.
DWORD removed = mapping->at(find).rva_original - rva_front;
for (; fill < find; ++fill) {
if (mapping->at(fill).rva_original + mapping->at(fill).length !=
rva_front) {
continue;
}
// This interval ends right where the gap starts. It needs to have its
// 'removed' information filled in.
mapping->at(fill).removed = removed;
}
}
// Advance the front that indicates the covered portion of the image.
rva_front = mapping->at(find).rva_original + mapping->at(find).length;
}
}
// Builds a unified view of the mapping between the original and transformed
// image space by merging OMAPTO and OMAPFROM data.
void BuildMapping(const OmapData& omap_data, Mapping* mapping) {
assert(mapping != NULL);
mapping->clear();
if (omap_data.omap_from.empty() || omap_data.omap_to.empty())
return;
// The names 'omap_to' and 'omap_from' are awfully confusing, so we make
// ourselves more explicit here. This cast is only safe because the underlying
// types have the exact same size.
const OmapToTable& tran2orig =
reinterpret_cast<const OmapToTable&>(omap_data.omap_to);
const OmapFromTable& orig2tran = reinterpret_cast<const OmapFromTable&>(
omap_data.omap_from);
// Handle the range of data at the beginning of the image. This is not usually
// specified by the OMAP data.
if (tran2orig[0].rva_transformed > 0 && orig2tran[0].rva_original > 0) {
DWORD header_transformed = tran2orig[0].rva_transformed;
DWORD header_original = orig2tran[0].rva_original;
DWORD header = Min(header_transformed, header_original);
MappedRange mr = {};
mr.length = header;
mr.injected = header_transformed - header;
mr.removed = header_original - header;
mapping->push_back(mr);
}
// Convert the implied lengths to explicit lengths, and infer which content
// has been injected into the transformed image. Injected content is inferred
// as regions of the transformed address space that does not map back to
// known valid content in the original image.
for (size_t i = 0; i < tran2orig.size(); ++i) {
const OmapTranToOrig& o1 = tran2orig[i];
// This maps to content that is outside the original image, thus it
// describes injected content. We can skip this entry.
if (o1.rva_original >= omap_data.length_original)
continue;
// Calculate the length of the current OMAP entry. This is implicit as the
// distance between successive |rva| values, capped at the end of the
// original image.
DWORD length = 0;
if (i + 1 < tran2orig.size()) {
const OmapTranToOrig& o2 = tran2orig[i + 1];
// We expect the table to be sorted by rva_transformed.
assert(o1.rva_transformed <= o2.rva_transformed);
length = o2.rva_transformed - o1.rva_transformed;
if (o1.rva_original + length > omap_data.length_original) {
length = omap_data.length_original - o1.rva_original;
}
} else {
length = omap_data.length_original - o1.rva_original;
}
// Zero-length entries don't describe anything and can be ignored.
if (length == 0)
continue;
// Any gaps in the transformed address-space are due to injected content.
if (!mapping->empty()) {
MappedRange& prev_mr = mapping->back();
prev_mr.injected += o1.rva_transformed -
(prev_mr.rva_transformed + prev_mr.length);
}
MappedRange mr = {};
mr.rva_original = o1.rva_original;
mr.rva_transformed = o1.rva_transformed;
mr.length = length;
mapping->push_back(mr);
}
// Sort based on the original image addresses.
std::sort(mapping->begin(), mapping->end(), MappedRangeOriginalLess);
// Fill in the 'removed' lengths by looking for gaps in the coverage of the
// original address space.
FillInRemovedLengths(mapping);
return;
}
void BuildEndpointIndexMap(ImageMap* image_map) {
assert(image_map != NULL);
if (image_map->mapping.size() == 0)
return;
const Mapping& mapping = image_map->mapping;
EndpointIndexMap& eim = image_map->endpoint_index_map;
// Get the unique set of interval endpoints.
std::set<DWORD> endpoints;
for (size_t i = 0; i < mapping.size(); ++i) {
endpoints.insert(mapping[i].rva_original);
endpoints.insert(mapping[i].rva_original +
mapping[i].length +
mapping[i].removed);
}
// Use the endpoints to initialize the secondary search structure for the
// mapping.
eim.resize(endpoints.size());
std::set<DWORD>::const_iterator it = endpoints.begin();
for (size_t i = 0; it != endpoints.end(); ++it, ++i) {
eim[i].endpoint = *it;
eim[i].index = mapping.size();
}
// For each endpoint we want the smallest index of any interval containing
// it. We iterate over the intervals and update the indices associated with
// each interval endpoint contained in the current interval. In the general
// case of an arbitrary set of intervals this is O(n^2), but the structure of
// OMAP data makes this O(n).
for (size_t i = 0; i < mapping.size(); ++i) {
EndpointIndex ei1 = { mapping[i].rva_original, 0 };
EndpointIndexMap::iterator it1 = std::lower_bound(
eim.begin(), eim.end(), ei1, EndpointIndexLess);
EndpointIndex ei2 = { mapping[i].rva_original + mapping[i].length +
mapping[i].removed, 0 };
EndpointIndexMap::iterator it2 = std::lower_bound(
eim.begin(), eim.end(), ei2, EndpointIndexLess);
for (; it1 != it2; ++it1)
it1->index = Min(i, it1->index);
}
}
// Clips the given mapped range.
void ClipMappedRangeOriginal(const AddressRange& clip_range,
MappedRange* mapped_range) {
assert(mapped_range != NULL);
// The clipping range is entirely outside of the mapped range.
if (clip_range.end() <= mapped_range->rva_original ||
mapped_range->rva_original + mapped_range->length +
mapped_range->removed <= clip_range.rva) {
mapped_range->length = 0;
mapped_range->injected = 0;
mapped_range->removed = 0;
return;
}
// Clip the left side.
if (mapped_range->rva_original < clip_range.rva) {
DWORD clip_left = clip_range.rva - mapped_range->rva_original;
mapped_range->rva_original += clip_left;
mapped_range->rva_transformed += clip_left;
if (clip_left > mapped_range->length) {
// The left clipping boundary entirely erases the content section of the
// range.
DWORD trim = clip_left - mapped_range->length;
mapped_range->length = 0;
mapped_range->injected -= Min(trim, mapped_range->injected);
// We know that trim <= mapped_range->remove.
mapped_range->removed -= trim;
} else {
// The left clipping boundary removes some, but not all, of the content.
// As such it leaves the removed/injected component intact.
mapped_range->length -= clip_left;
}
}
// Clip the right side.
DWORD end_original = mapped_range->rva_original + mapped_range->length;
if (clip_range.end() < end_original) {
// The right clipping boundary lands in the 'content' section of the range,
// entirely clearing the injected/removed portion.
DWORD clip_right = end_original - clip_range.end();
mapped_range->length -= clip_right;
mapped_range->injected = 0;
mapped_range->removed = 0;
return;
} else {
// The right clipping boundary is outside of the content, but may affect
// the removed/injected portion of the range.
DWORD end_removed = end_original + mapped_range->removed;
if (clip_range.end() < end_removed)
mapped_range->removed = clip_range.end() - end_original;
DWORD end_injected = end_original + mapped_range->injected;
if (clip_range.end() < end_injected)
mapped_range->injected = clip_range.end() - end_original;
}
return;
}
} // namespace
int AddressRange::Compare(const AddressRange& rhs) const {
if (end() <= rhs.rva)
return -1;
if (rhs.end() <= rva)
return 1;
return 0;
}
bool GetOmapDataAndDisableTranslation(IDiaSession* session,
OmapData* omap_data) {
assert(session != NULL);
assert(omap_data != NULL);
CComPtr<IDiaAddressMap> address_map;
if (FAILED(session->QueryInterface(&address_map))) {
fprintf(stderr, "IDiaSession::QueryInterface(IDiaAddressMap) failed\n");
return false;
}
assert(address_map.p != NULL);
BOOL omap_enabled = FALSE;
if (FAILED(address_map->get_addressMapEnabled(&omap_enabled))) {
fprintf(stderr, "IDiaAddressMap::get_addressMapEnabled failed\n");
return false;
}
if (!omap_enabled) {
// We indicate the non-presence of OMAP data by returning empty tables.
omap_data->omap_from.clear();
omap_data->omap_to.clear();
omap_data->length_original = 0;
return true;
}
// OMAP data is present. Disable translation.
if (FAILED(address_map->put_addressMapEnabled(FALSE))) {
fprintf(stderr, "IDiaAddressMap::put_addressMapEnabled failed\n");
return false;
}
// Read the OMAP streams.
if (!FindAndLoadOmapTable(kOmapFromDebugStreamName,
session,
&omap_data->omap_from)) {
return false;
}
if (!FindAndLoadOmapTable(kOmapToDebugStreamName,
session,
&omap_data->omap_to)) {
return false;
}
// Get the lengths of the address spaces.
if (!GetOriginalImageLength(session, &omap_data->length_original))
return false;
return true;
}
void BuildImageMap(const OmapData& omap_data, ImageMap* image_map) {
assert(image_map != NULL);
BuildMapping(omap_data, &image_map->mapping);
BuildEndpointIndexMap(image_map);
}
void MapAddressRange(const ImageMap& image_map,
const AddressRange& original_range,
AddressRangeVector* mapped_ranges) {
assert(mapped_ranges != NULL);
const Mapping& map = image_map.mapping;
// Handle the trivial case of an empty image_map. This means that there is
// no transformation to be applied, and we can simply return the original
// range.
if (map.empty()) {
mapped_ranges->push_back(original_range);
return;
}
// If we get a query of length 0 we need to handle it by using a non-zero
// query length.
AddressRange query_range(original_range);
if (query_range.length == 0)
query_range.length = 1;
// Find the range of intervals that can potentially intersect our query range.
size_t imin = 0;
size_t imax = 0;
{
// The index of the earliest possible range that can affect is us done by
// searching through the secondary indexing structure.
const EndpointIndexMap& eim = image_map.endpoint_index_map;
EndpointIndex q1 = { query_range.rva, 0 };
EndpointIndexMap::const_iterator it1 = std::lower_bound(
eim.begin(), eim.end(), q1, EndpointIndexLess);
if (it1 == eim.end()) {
imin = map.size();
} else {
// Backup to find the interval that contains our query point.
if (it1 != eim.begin() && query_range.rva < it1->endpoint)
--it1;
imin = it1->index;
}
// The first range that can't possibly intersect us is found by searching
// through the image map directly as it is already sorted by interval start
// point.
MappedRange q2 = { query_range.end(), 0 };
Mapping::const_iterator it2 = std::lower_bound(
map.begin(), map.end(), q2, MappedRangeOriginalLess);
imax = it2 - map.begin();
}
// Find all intervals that intersect the query range.
Mapping temp_map;
for (size_t i = imin; i < imax; ++i) {
MappedRange mr = map[i];
ClipMappedRangeOriginal(query_range, &mr);
if (mr.length + mr.injected > 0)
temp_map.push_back(mr);
}
// If there are no intersecting ranges then the query range has been removed
// from the image in question.
if (temp_map.empty())
return;
// Sort based on transformed addresses.
std::sort(temp_map.begin(), temp_map.end(), MappedRangeMappedLess);
// Zero-length queries can't actually be merged. We simply output the set of
// unique RVAs that correspond to the query RVA.
if (original_range.length == 0) {
mapped_ranges->push_back(AddressRange(temp_map[0].rva_transformed, 0));
for (size_t i = 1; i < temp_map.size(); ++i) {
if (temp_map[i].rva_transformed > mapped_ranges->back().rva)
mapped_ranges->push_back(AddressRange(temp_map[i].rva_transformed, 0));
}
return;
}
// Merge any ranges that are consecutive in the mapped image. We merge over
// injected content if it makes ranges contiguous, but we ignore any injected
// content at the tail end of a range. This allows us to detect symbols that
// have been lengthened by injecting content in the middle. However, it
// misses the case where content has been injected at the head or the tail.
// The problem is that it doesn't know whether to attribute it to the
// preceding or following symbol. It is up to the author of the transform to
// output explicit OMAP info in these cases to ensure full coverage of the
// transformed address space.
DWORD rva_begin = temp_map[0].rva_transformed;
DWORD rva_cur_content = rva_begin + temp_map[0].length;
DWORD rva_cur_injected = rva_cur_content + temp_map[0].injected;
for (size_t i = 1; i < temp_map.size(); ++i) {
if (rva_cur_injected < temp_map[i].rva_transformed) {
// This marks the end of a continuous range in the image. Output the
// current range and start a new one.
if (rva_begin < rva_cur_content) {
mapped_ranges->push_back(
AddressRange(rva_begin, rva_cur_content - rva_begin));
}
rva_begin = temp_map[i].rva_transformed;
}
rva_cur_content = temp_map[i].rva_transformed + temp_map[i].length;
rva_cur_injected = rva_cur_content + temp_map[i].injected;
}
// Output the range in progress.
if (rva_begin < rva_cur_content) {
mapped_ranges->push_back(
AddressRange(rva_begin, rva_cur_content - rva_begin));
}
return;
}
} // namespace google_breakpad
|