1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// contained_range_map.h: Hierarchically-organized range maps.
//
// A contained range map is similar to a standard range map, except it allows
// objects to be organized hierarchically. A contained range map allows
// objects to contain other objects. It is not sensitive to the order that
// objects are added to the map: larger, more general, containing objects
// may be added either before or after smaller, more specific, contained
// ones.
//
// Contained range maps guarantee that each object may only contain smaller
// objects than itself, and that a parent object may only contain child
// objects located entirely within the parent's address space. Attempts
// to introduce objects (via StoreRange) that violate these rules will fail.
// Retrieval (via RetrieveRange) always returns the most specific (smallest)
// object that contains the address being queried. Note that while it is
// not possible to insert two objects into a map that have exactly the same
// geometry (base address and size), it is possible to completely mask a
// larger object by inserting smaller objects that entirely fill the larger
// object's address space.
//
// Internally, contained range maps are implemented as a tree. Each tree
// node except for the root node describes an object in the map. Each node
// maintains its list of children in a map similar to a standard range map,
// keyed by the highest address that each child occupies. Each node's
// children occupy address ranges entirely within the node. The root node
// is the only node directly accessible to the user, and represents the
// entire address space.
//
// Author: Mark Mentovai
#ifndef PROCESSOR_CONTAINED_RANGE_MAP_H__
#define PROCESSOR_CONTAINED_RANGE_MAP_H__
#include <map>
namespace google_breakpad {
// Forward declarations (for later friend declarations of specialized template).
template<class, class> class ContainedRangeMapSerializer;
template<typename AddressType, typename EntryType>
class ContainedRangeMap {
public:
// The default constructor creates a ContainedRangeMap with no geometry
// and no entry, and as such is only suitable for the root node of a
// ContainedRangeMap tree.
ContainedRangeMap() : base_(), entry_(), map_(NULL) {}
~ContainedRangeMap();
// Inserts a range into the map. If the new range is encompassed by
// an existing child range, the new range is passed into the child range's
// StoreRange method. If the new range encompasses any existing child
// ranges, those child ranges are moved to the new range, becoming
// grandchildren of this ContainedRangeMap. Returns false for a
// parameter error, or if the ContainedRangeMap hierarchy guarantees
// would be violated.
bool StoreRange(const AddressType &base,
const AddressType &size,
const EntryType &entry);
// Retrieves the most specific (smallest) descendant range encompassing
// the specified address. This method will only return entries held by
// child ranges, and not the entry contained by |this|. This is necessary
// to support a sparsely-populated root range. If no descendant range
// encompasses the address, returns false.
bool RetrieveRange(const AddressType &address, EntryType *entry) const;
// Removes all children. Note that Clear only removes descendants,
// leaving the node on which it is called intact. Because the only
// meaningful things contained by a root node are descendants, this
// is sufficient to restore an entire ContainedRangeMap to its initial
// empty state when called on the root node.
void Clear();
private:
friend class ContainedRangeMapSerializer<AddressType, EntryType>;
friend class ModuleComparer;
// AddressToRangeMap stores pointers. This makes reparenting simpler in
// StoreRange, because it doesn't need to copy entire objects.
typedef std::map<AddressType, ContainedRangeMap *> AddressToRangeMap;
typedef typename AddressToRangeMap::const_iterator MapConstIterator;
typedef typename AddressToRangeMap::iterator MapIterator;
typedef typename AddressToRangeMap::value_type MapValue;
// Creates a new ContainedRangeMap with the specified base address, entry,
// and initial child map, which may be NULL. This is only used internally
// by ContainedRangeMap when it creates a new child.
ContainedRangeMap(const AddressType &base, const EntryType &entry,
AddressToRangeMap *map)
: base_(base), entry_(entry), map_(map) {}
// The base address of this range. The high address does not need to
// be stored, because it is used as the key to an object in its parent's
// map, and all ContainedRangeMaps except for the root range are contained
// within maps. The root range does not actually contain an entry, so its
// base_ field is meaningless, and the fact that it has no parent and thus
// no key is unimportant. For this reason, the base_ field should only be
// is accessed on child ContainedRangeMap objects, and never on |this|.
const AddressType base_;
// The entry corresponding to this range. The root range does not
// actually contain an entry, so its entry_ field is meaningless. For
// this reason, the entry_ field should only be accessed on child
// ContainedRangeMap objects, and never on |this|.
const EntryType entry_;
// The map containing child ranges, keyed by each child range's high
// address. This is a pointer to avoid allocating map structures for
// leaf nodes, where they are not needed.
AddressToRangeMap *map_;
};
} // namespace google_breakpad
#endif // PROCESSOR_CONTAINED_RANGE_MAP_H__
|