aboutsummaryrefslogtreecommitdiff
path: root/src/processor/exploitability_linux.cc
blob: 798056dfa9f2d928006bc2a24752501f078006b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// Copyright (c) 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// exploitability_linux.cc: Linux specific exploitability engine.
//
// Provides a guess at the exploitability of the crash for the Linux
// platform given a minidump and process_state.
//
// Author: Matthew Riley

#include "processor/exploitability_linux.h"

#ifndef _WIN32
#include <regex.h>
#include <stdio.h>
#include <stdlib.h>

#include <sstream>
#include <iterator>
#endif  // _WIN32

#include <string.h>

#include "google_breakpad/common/minidump_exception_linux.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/process_state.h"
#include "google_breakpad/processor/stack_frame.h"
#include "processor/logging.h"

namespace {

// Prefixes for memory mapping names.
constexpr char kHeapPrefix[] = "[heap";
constexpr char kStackPrefix[] =  "[stack";

// This function in libc is called if the program was compiled with
// -fstack-protector and a function's stack canary changes.
constexpr char kStackCheckFailureFunction[] = "__stack_chk_fail";

// This function in libc is called if the program was compiled with
// -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
// can determine that the call would overflow the target buffer.
constexpr char kBoundsCheckFailureFunction[] = "__chk_fail";

#ifndef _WIN32
const unsigned int MAX_INSTRUCTION_LEN = 15;
const unsigned int MAX_OBJDUMP_BUFFER_LEN = 4096;
#endif  // _WIN32

}  // namespace

namespace google_breakpad {

ExploitabilityLinux::ExploitabilityLinux(Minidump* dump,
                                         ProcessState* process_state)
    : Exploitability(dump, process_state),
      enable_objdump_(false) { }

ExploitabilityLinux::ExploitabilityLinux(Minidump* dump,
                                         ProcessState* process_state,
                                         bool enable_objdump)
    : Exploitability(dump, process_state),
      enable_objdump_(enable_objdump) { }


ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
  // Check the crashing thread for functions suggesting a buffer overflow or
  // stack smash.
  if (process_state_->requesting_thread() != -1) {
    CallStack* crashing_thread =
        process_state_->threads()->at(process_state_->requesting_thread());
    const vector<StackFrame*>& crashing_thread_frames =
        *crashing_thread->frames();
    for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
      if (crashing_thread_frames[i]->function_name ==
          kStackCheckFailureFunction) {
        return EXPLOITABILITY_HIGH;
      }

      if (crashing_thread_frames[i]->function_name ==
          kBoundsCheckFailureFunction) {
        return EXPLOITABILITY_HIGH;
      }
    }
  }

  // Getting exception data. (It should exist for all minidumps.)
  MinidumpException* exception = dump_->GetException();
  if (exception == NULL) {
    BPLOG(INFO) << "No exception record.";
    return EXPLOITABILITY_ERR_PROCESSING;
  }
  const MDRawExceptionStream* raw_exception_stream = exception->exception();
  if (raw_exception_stream == NULL) {
    BPLOG(INFO) << "No raw exception stream.";
    return EXPLOITABILITY_ERR_PROCESSING;
  }

  // Checking for benign exceptions that caused the crash.
  if (this->BenignCrashTrigger(raw_exception_stream)) {
    return EXPLOITABILITY_NONE;
  }

  // Check if the instruction pointer is in a valid instruction region
  // by finding if it maps to an executable part of memory.
  uint64_t instruction_ptr = 0;
  uint64_t stack_ptr = 0;

  const MinidumpContext* context = exception->GetContext();
  if (context == NULL) {
    BPLOG(INFO) << "No exception context.";
    return EXPLOITABILITY_ERR_PROCESSING;
  }

  // Getting the instruction pointer.
  if (!context->GetInstructionPointer(&instruction_ptr)) {
    BPLOG(INFO) << "Failed to retrieve instruction pointer.";
    return EXPLOITABILITY_ERR_PROCESSING;
  }

  // Getting the stack pointer.
  if (!context->GetStackPointer(&stack_ptr)) {
    BPLOG(INFO) << "Failed to retrieve stack pointer.";
    return EXPLOITABILITY_ERR_PROCESSING;
  }

  // Checking for the instruction pointer in a valid instruction region,
  // a misplaced stack pointer, and an executable stack or heap.
  if (!this->InstructionPointerInCode(instruction_ptr) ||
       this->StackPointerOffStack(stack_ptr) ||
       this->ExecutableStackOrHeap()) {
    return EXPLOITABILITY_HIGH;
  }

  // Check for write to read only memory or invalid memory, shelling out
  // to objdump is enabled.
  if (enable_objdump_ && this->EndedOnIllegalWrite(instruction_ptr)) {
    return EXPLOITABILITY_HIGH;
  }

  // There was no strong evidence suggesting exploitability, but the minidump
  // does not appear totally benign either.
  return EXPLOITABILITY_INTERESTING;
}

bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) {
#ifdef _WIN32
  BPLOG(INFO) << "MinGW does not support fork and exec. Terminating method.";
#else
  // Get memory region containing instruction pointer.
  MinidumpMemoryList* memory_list = dump_->GetMemoryList();
  MinidumpMemoryRegion* memory_region =
      memory_list ?
      memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL;
  if (!memory_region) {
    BPLOG(INFO) << "No memory region around instruction pointer.";
    return false;
  }

  // Get exception data to find architecture.
  string architecture = "";
  MinidumpException* exception = dump_->GetException();
  // This should never evaluate to true, since this should not be reachable
  // without checking for exception data earlier.
  if (!exception) {
    BPLOG(INFO) << "No exception data.";
    return false;
  }
  const MDRawExceptionStream* raw_exception_stream = exception->exception();
  const MinidumpContext* context = exception->GetContext();
  // This should not evaluate to true, for the same reason mentioned above.
  if (!raw_exception_stream || !context) {
    BPLOG(INFO) << "No exception or architecture data.";
    return false;
  }
  // Check architecture and set architecture variable to corresponding flag
  // in objdump.
  switch (context->GetContextCPU()) {
    case MD_CONTEXT_X86:
      architecture = "i386";
      break;
    case MD_CONTEXT_AMD64:
      architecture = "i386:x86-64";
      break;
    default:
      // Unsupported architecture. Note that ARM architectures are not
      // supported because objdump does not support ARM.
      return false;
      break;
  }

  // Get memory region around instruction pointer and the number of bytes
  // before and after the instruction pointer in the memory region.
  const uint8_t* raw_memory = memory_region->GetMemory();
  const uint64_t base = memory_region->GetBase();
  if (base > instruction_ptr) {
    BPLOG(ERROR) << "Memory region base value exceeds instruction pointer.";
    return false;
  }
  const uint64_t offset = instruction_ptr - base;
  if (memory_region->GetSize() < MAX_INSTRUCTION_LEN + offset) {
    BPLOG(INFO) << "Not enough bytes left to guarantee complete instruction.";
    return false;
  }

  // Convert bytes into objdump output.
  char objdump_output_buffer[MAX_OBJDUMP_BUFFER_LEN] = {0};
  DisassembleBytes(architecture,
                   raw_memory + offset,
                   MAX_OBJDUMP_BUFFER_LEN,
                   objdump_output_buffer);

  string line;
  if (!GetObjdumpInstructionLine(objdump_output_buffer, &line)) {
    return false;
  }

  // Convert objdump instruction line into the operation and operands.
  string instruction = "";
  string dest = "";
  string src = "";
  TokenizeObjdumpInstruction(line, &instruction, &dest, &src);

  // Check if the operation is a write to memory. First, the instruction
  // must one that can write to memory. Second, the write destination
  // must be a spot in memory rather than a register. Since there are no
  // symbols from objdump, the destination will be enclosed by brackets.
  if (dest.size() > 2 && dest.at(0) == '[' && dest.at(dest.size() - 1) == ']' &&
      (!instruction.compare("mov") || !instruction.compare("inc") ||
       !instruction.compare("dec") || !instruction.compare("and") ||
       !instruction.compare("or") || !instruction.compare("xor") ||
       !instruction.compare("not") || !instruction.compare("neg") ||
       !instruction.compare("add") || !instruction.compare("sub") ||
       !instruction.compare("shl") || !instruction.compare("shr"))) {
    // Strip away enclosing brackets from the destination address.
    dest = dest.substr(1, dest.size() - 2);
    uint64_t write_address = 0;
    CalculateAddress(dest, *context, &write_address);

    // If the program crashed as a result of a write, the destination of
    // the write must have been an address that did not permit writing.
    // However, if the address is under 4k, due to program protections,
    // the crash does not suggest exploitability for writes with such a
    // low target address.
    return write_address > 4096;
  }
#endif  // _WIN32
  return false;
}

#ifndef _WIN32
bool ExploitabilityLinux::CalculateAddress(const string& address_expression,
                                           const DumpContext& context,
                                           uint64_t* write_address) {
  // The destination should be the format reg+a or reg-a, where reg
  // is a register and a is a hexadecimal constant. Although more complex
  // expressions can make valid instructions, objdump's disassembly outputs
  // it in this simpler format.
  // TODO(liuandrew): Handle more complex formats, should they arise.

  if (!write_address) {
    BPLOG(ERROR) << "Null parameter.";
    return false;
  }

  // Clone parameter into a non-const string.
  string expression = address_expression;

  // Parse out the constant that is added to the address (if it exists).
  size_t delim = expression.find('+');
  bool positive_add_constant = true;
  // Check if constant is subtracted instead of added.
  if (delim == string::npos) {
    positive_add_constant = false;
    delim = expression.find('-');
  }
  uint32_t add_constant = 0;
  // Save constant and remove it from the expression.
  if (delim != string::npos) {
    if (!sscanf(expression.substr(delim + 1).c_str(), "%x", &add_constant)) {
      BPLOG(ERROR) << "Failed to scan constant.";
      return false;
    }
    expression = expression.substr(0, delim);
  }

  // Set the the write address to the corresponding register.
  // TODO(liuandrew): Add support for partial registers, such as
  // the rax/eax/ax/ah/al chain.
  switch (context.GetContextCPU()) {
    case MD_CONTEXT_X86:
      if (!expression.compare("eax")) {
        *write_address = context.GetContextX86()->eax;
      } else if (!expression.compare("ebx")) {
        *write_address = context.GetContextX86()->ebx;
      } else if (!expression.compare("ecx")) {
        *write_address = context.GetContextX86()->ecx;
      } else if (!expression.compare("edx")) {
        *write_address = context.GetContextX86()->edx;
      } else if (!expression.compare("edi")) {
        *write_address = context.GetContextX86()->edi;
      } else if (!expression.compare("esi")) {
        *write_address = context.GetContextX86()->esi;
      } else if (!expression.compare("ebp")) {
        *write_address = context.GetContextX86()->ebp;
      } else if (!expression.compare("esp")) {
        *write_address = context.GetContextX86()->esp;
      } else if (!expression.compare("eip")) {
        *write_address = context.GetContextX86()->eip;
      } else {
        BPLOG(ERROR) << "Unsupported register";
        return false;
      }
      break;
    case MD_CONTEXT_AMD64:
      if (!expression.compare("rax")) {
        *write_address = context.GetContextAMD64()->rax;
      } else if (!expression.compare("rbx")) {
        *write_address = context.GetContextAMD64()->rbx;
      } else if (!expression.compare("rcx")) {
        *write_address = context.GetContextAMD64()->rcx;
      } else if (!expression.compare("rdx")) {
        *write_address = context.GetContextAMD64()->rdx;
      } else if (!expression.compare("rdi")) {
        *write_address = context.GetContextAMD64()->rdi;
      } else if (!expression.compare("rsi")) {
        *write_address = context.GetContextAMD64()->rsi;
      } else if (!expression.compare("rbp")) {
        *write_address = context.GetContextAMD64()->rbp;
      } else if (!expression.compare("rsp")) {
        *write_address = context.GetContextAMD64()->rsp;
      } else if (!expression.compare("rip")) {
        *write_address = context.GetContextAMD64()->rip;
      } else if (!expression.compare("r8")) {
        *write_address = context.GetContextAMD64()->r8;
      } else if (!expression.compare("r9")) {
        *write_address = context.GetContextAMD64()->r9;
      } else if (!expression.compare("r10")) {
        *write_address = context.GetContextAMD64()->r10;
      } else if (!expression.compare("r11")) {
        *write_address = context.GetContextAMD64()->r11;
      } else if (!expression.compare("r12")) {
        *write_address = context.GetContextAMD64()->r12;
      } else if (!expression.compare("r13")) {
        *write_address = context.GetContextAMD64()->r13;
      } else if (!expression.compare("r14")) {
        *write_address = context.GetContextAMD64()->r14;
      } else if (!expression.compare("r15")) {
        *write_address = context.GetContextAMD64()->r15;
      } else {
        BPLOG(ERROR) << "Unsupported register";
        return false;
      }
      break;
    default:
      // This should not occur since the same switch condition
      // should have terminated this method.
      return false;
      break;
  }

  // Add or subtract constant from write address (if applicable).
  *write_address =
      positive_add_constant ?
      *write_address + add_constant : *write_address - add_constant;

  return true;
}

// static
bool ExploitabilityLinux::GetObjdumpInstructionLine(
    const char* objdump_output_buffer,
    string* instruction_line) {
  // Put buffer data into stream to output line-by-line.
  std::stringstream objdump_stream;
  objdump_stream.str(string(objdump_output_buffer));

  // Pipe each output line into the string until the string contains the first
  // instruction from objdump.  All lines before the "<.data>:" section are
  // skipped.  Loop until the line shows the first instruction or there are no
  // lines left.
  bool data_section_seen = false;
  do {
    if (!getline(objdump_stream, *instruction_line)) {
      BPLOG(INFO) << "Objdump instructions not found";
      return false;
    }
    if (instruction_line->find("<.data>:") != string::npos) {
      data_section_seen = true;
    }
  } while (!data_section_seen || instruction_line->find("0:") == string::npos);
  // This first instruction contains the above substring.

  return true;
}

bool ExploitabilityLinux::TokenizeObjdumpInstruction(const string& line,
                                                     string* operation,
                                                     string* dest,
                                                     string* src) {
  if (!operation || !dest || !src) {
    BPLOG(ERROR) << "Null parameters passed.";
    return false;
  }

  // Set all pointer values to empty strings.
  *operation = "";
  *dest = "";
  *src = "";

  // Tokenize the objdump line.
  vector<string> tokens;
  std::istringstream line_stream(line);
  copy(std::istream_iterator<string>(line_stream),
       std::istream_iterator<string>(),
       std::back_inserter(tokens));

  // Regex for the data in hex form. Each byte is two hex digits.
  regex_t regex;
  regcomp(&regex, "^[[:xdigit:]]{2}$", REG_EXTENDED | REG_NOSUB);

  // Find and set the location of the operator. The operator appears
  // directly after the chain of bytes that define the instruction. The
  // operands will be the last token, given that the instruction has operands.
  // If not, the operator is the last token. The loop skips the first token
  // because the first token is the instruction number (namely "0:").
  string operands = "";
  for (size_t i = 1; i < tokens.size(); i++) {
    // Check if current token no longer is in byte format.
    if (regexec(&regex, tokens[i].c_str(), 0, NULL, 0)) {
      // instruction = tokens[i];
      *operation = tokens[i];
      // If the operator is the last token, there are no operands.
      if (i != tokens.size() - 1) {
        operands = tokens[tokens.size() - 1];
      }
      break;
    }
  }
  regfree(&regex);

  if (operation->empty()) {
    BPLOG(ERROR) << "Failed to parse out operation from objdump instruction.";
    return false;
  }

  // Split operands into source and destination (if applicable).
  if (!operands.empty()) {
    size_t delim = operands.find(',');
    if (delim == string::npos) {
      *dest = operands;
    } else {
      *dest = operands.substr(0, delim);
      *src = operands.substr(delim + 1);
    }
  }
  return true;
}

bool ExploitabilityLinux::DisassembleBytes(const string& architecture,
                                           const uint8_t* raw_bytes,
                                           const unsigned int buffer_len,
                                           char* objdump_output_buffer) {
  if (!raw_bytes || !objdump_output_buffer) {
    BPLOG(ERROR) << "Bad input parameters.";
    return false;
  }

  // Write raw bytes around instruction pointer to a temporary file to
  // pass as an argument to objdump.
  char raw_bytes_tmpfile[] = "/tmp/breakpad_mem_region-raw_bytes-XXXXXX";
  int raw_bytes_fd = mkstemp(raw_bytes_tmpfile);
  if (raw_bytes_fd < 0) {
    BPLOG(ERROR) << "Failed to create tempfile.";
    unlink(raw_bytes_tmpfile);
    return false;
  }
  if (write(raw_bytes_fd, raw_bytes, MAX_INSTRUCTION_LEN)
      != MAX_INSTRUCTION_LEN) {
    BPLOG(ERROR) << "Writing of raw bytes failed.";
    unlink(raw_bytes_tmpfile);
    return false;
  }

  char cmd[1024] = {0};
  snprintf(cmd,
           1024,
           "objdump -D -b binary -M intel -m %s %s",
           architecture.c_str(),
           raw_bytes_tmpfile);
  FILE* objdump_fp = popen(cmd, "r");
  if (!objdump_fp) {
    fclose(objdump_fp);
    unlink(raw_bytes_tmpfile);
    BPLOG(ERROR) << "Failed to call objdump.";
    return false;
  }
  if (fread(objdump_output_buffer, 1, buffer_len, objdump_fp) <= 0) {
    fclose(objdump_fp);
    unlink(raw_bytes_tmpfile);
    BPLOG(ERROR) << "Failed to read objdump output.";
    return false;
  }
  fclose(objdump_fp);
  unlink(raw_bytes_tmpfile);
  return true;
}
#endif  // _WIN32

bool ExploitabilityLinux::StackPointerOffStack(uint64_t stack_ptr) {
  MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
  // Inconclusive if there are no mappings available.
  if (!linux_maps_list) {
    return false;
  }
  const MinidumpLinuxMaps* linux_maps =
      linux_maps_list->GetLinuxMapsForAddress(stack_ptr);
  // Checks if the stack pointer maps to a valid mapping and if the mapping
  // is not the stack. If the mapping has no name, it is inconclusive whether
  // it is off the stack.
  return !linux_maps || (linux_maps->GetPathname().compare("") &&
                         linux_maps->GetPathname().compare(
                             0, strlen(kStackPrefix), kStackPrefix));
}

bool ExploitabilityLinux::ExecutableStackOrHeap() {
  MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
  if (linux_maps_list) {
    for (size_t i = 0; i < linux_maps_list->get_maps_count(); i++) {
      const MinidumpLinuxMaps* linux_maps =
          linux_maps_list->GetLinuxMapsAtIndex(i);
      // Check for executable stack or heap for each mapping.
      if (linux_maps && (!linux_maps->GetPathname().compare(
                             0, strlen(kStackPrefix), kStackPrefix) ||
                         !linux_maps->GetPathname().compare(
                             0, strlen(kHeapPrefix), kHeapPrefix)) &&
          linux_maps->IsExecutable()) {
        return true;
      }
    }
  }
  return false;
}

bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
  // Get Linux memory mapping from /proc/self/maps. Checking whether the
  // region the instruction pointer is in has executable permission can tell
  // whether it is in a valid code region. If there is no mapping for the
  // instruction pointer, it is indicative that the instruction pointer is
  // not within a module, which implies that it is outside a valid area.
  MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
  const MinidumpLinuxMaps* linux_maps =
      linux_maps_list ?
      linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
  return linux_maps ? linux_maps->IsExecutable() : false;
}

bool ExploitabilityLinux::BenignCrashTrigger(
    const MDRawExceptionStream* raw_exception_stream) {
  // Check the cause of crash.
  // If the exception of the crash is a benign exception,
  // it is probably not exploitable.
  switch (raw_exception_stream->exception_record.exception_code) {
    case MD_EXCEPTION_CODE_LIN_SIGHUP:
    case MD_EXCEPTION_CODE_LIN_SIGINT:
    case MD_EXCEPTION_CODE_LIN_SIGQUIT:
    case MD_EXCEPTION_CODE_LIN_SIGTRAP:
    case MD_EXCEPTION_CODE_LIN_SIGABRT:
    case MD_EXCEPTION_CODE_LIN_SIGFPE:
    case MD_EXCEPTION_CODE_LIN_SIGKILL:
    case MD_EXCEPTION_CODE_LIN_SIGUSR1:
    case MD_EXCEPTION_CODE_LIN_SIGUSR2:
    case MD_EXCEPTION_CODE_LIN_SIGPIPE:
    case MD_EXCEPTION_CODE_LIN_SIGALRM:
    case MD_EXCEPTION_CODE_LIN_SIGTERM:
    case MD_EXCEPTION_CODE_LIN_SIGCHLD:
    case MD_EXCEPTION_CODE_LIN_SIGCONT:
    case MD_EXCEPTION_CODE_LIN_SIGSTOP:
    case MD_EXCEPTION_CODE_LIN_SIGTSTP:
    case MD_EXCEPTION_CODE_LIN_SIGTTIN:
    case MD_EXCEPTION_CODE_LIN_SIGTTOU:
    case MD_EXCEPTION_CODE_LIN_SIGURG:
    case MD_EXCEPTION_CODE_LIN_SIGXCPU:
    case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
    case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
    case MD_EXCEPTION_CODE_LIN_SIGPROF:
    case MD_EXCEPTION_CODE_LIN_SIGWINCH:
    case MD_EXCEPTION_CODE_LIN_SIGIO:
    case MD_EXCEPTION_CODE_LIN_SIGPWR:
    case MD_EXCEPTION_CODE_LIN_SIGSYS:
    case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
      return true;
      break;
    default:
      return false;
      break;
  }
}

}  // namespace google_breakpad