aboutsummaryrefslogtreecommitdiff
path: root/src/processor/minidump.h
blob: 700daa1810897a8e9302445fd594caec862bc83d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// minidump.h: A minidump reader.
//
// The basic structure of this module tracks the structure of the minidump
// file itself.  At the top level, a minidump file is represented by a
// Minidump object.  Like most other classes in this module, Minidump
// provides a Read method that initializes the object with information from
// the file.  Most of the classes in this file are wrappers around the
// "raw" structures found in the minidump file itself, and defined in
// minidump_format.h.  For example, each thread is represented by a
// MinidumpThread object, whose parameters are specified in an MDRawThread
// structure.  A properly byte-swapped MDRawThread can be obtained from a
// MinidumpThread easily by calling its thread() method.
//
// Most of the module lazily reads only the portion of the minidump file
// necessary to fulfill the user's request.  Calling Minidump::Read
// only reads the minidump's directory.  The thread list is not read until
// it is needed, and even once it's read, the memory regions for each
// thread's stack aren't read until they're needed.  This strategy avoids
// unnecessary file input, and allocating memory for data in which the user
// has no interest.  Note that although memory allocations for a typical
// minidump file are not particularly large, it is possible for legitimate
// minidumps to be sizable.  A full-memory minidump, for example, contains
// a snapshot of the entire mapped memory space.  Even a normal minidump,
// with stack memory only, can be large if, for example, the dump was
// generated in response to a crash that occurred due to an infinite-
// recursion bug that caused the stack's limits to be exceeded.  Finally,
// some users of this library will unfortunately find themselves in the
// position of having to process potentially-hostile minidumps that might
// attempt to cause problems by forcing the minidump processor to over-
// allocate memory.
//
// Memory management in this module is based on a strict
// you-don't-own-anything policy.  The only object owned by the user is
// the top-level Minidump object, the creation and destruction of which
// must be the user's own responsibility.  All other objects obtained
// through interaction with this module are ultimately owned by the
// Minidump object, and will be freed upon the Minidump object's destruction.
// Because memory regions can potentially involve large allocations, a
// FreeMemory method is provided by MinidumpMemoryRegion, allowing the user
// to release data when it is no longer needed.  Use of this method is
// optional but recommended.  If freed data is later required, it will
// be read back in from the minidump file again.
//
// There is one exception to this memory management policy:
// Minidump::ReadString will return a string object to the user, and the user
// is responsible for its deletion.
//
// Author: Mark Mentovai

#ifndef PROCESSOR_MINIDUMP_H__
#define PROCESSOR_MINIDUMP_H__


// TODO(mmentovai): is it ok to include non-<string> header in .h?
#include <map>
#include <string>
#include <vector>

#include "processor/minidump_format.h"
#include "processor/memory_region.h"
#include "processor/range_map.h"


namespace google_airbag {


using std::map;
using std::string;
using std::vector;


class Minidump;


// MinidumpObject is the base of all Minidump* objects except for Minidump
// itself.
class MinidumpObject {
 public:
  virtual ~MinidumpObject() {}

 protected:
  explicit MinidumpObject(Minidump* minidump);

  // Refers to the Minidump object that is the ultimate parent of this
  // Some MinidumpObjects are owned by other MinidumpObjects, but at the
  // root of the ownership tree is always a Minidump.  The Minidump object
  // is kept here for access to its seeking and reading facilities, and
  // for access to data about the minidump file itself, such as whether
  // it should be byte-swapped.
  Minidump* minidump_;

  // MinidumpObjects are not valid when created.  When a subclass populates
  // its own fields, it can set valid_ to true.  Accessors and mutators may
  // wish to consider or alter the valid_ state as they interact with
  // objects.
  bool      valid_;
};


// This class exists primarily to provide a virtual destructor in a base
// class common to all objects that might be stored in
// Minidump::mStreamObjects.  Some object types (MinidumpContext) will
// never be stored in Minidump::mStreamObjects, but are represented as
// streams and adhere to the same interface, and may be derived from
// this class.
class MinidumpStream : public MinidumpObject {
 public:
  virtual ~MinidumpStream() {}

 protected:
  explicit MinidumpStream(Minidump* minidump);

 private:
  // Populate (and validate) the MinidumpStream.  minidump_ is expected
  // to be positioned at the beginning of the stream, so that the next
  // read from the minidump will be at the beginning of the stream.
  // expected_size should be set to the stream's length as contained in
  // the MDRawDirectory record or other identifying record.  A class
  // that implements MinidumpStream can compare expected_size to a
  // known size as an integrity check.
  virtual bool Read(u_int32_t expected_size) = 0;
};


// MinidumpContext carries a CPU-specific MDRawContext structure, which
// contains CPU context such as register states.  Each thread has its
// own context, and the exception record, if present, also has its own
// context.  Note that if the exception record is present, the context it
// refers to is probably what the user wants to use for the exception
// thread, instead of that thread's own context.  The exception thread's
// context (as opposed to the exception record's context) will contain
// context for the exception handler (which performs minidump generation),
// and not the context that caused the exception (which is probably what the
// user wants).
class MinidumpContext : public MinidumpStream {
 public:
  ~MinidumpContext();

  // Returns an MD_CONTEXT_* value such as MD_CONTEXT_X86 or MD_CONTEXT_PPC
  // identifying the CPU type that the context was collected from.  The
  // returned value will identify the CPU only, and will have any other
  // MD_CONTEXT_* bits masked out.  Returns 0 on failure.
  u_int32_t GetContextCPU() const;

  // Returns raw CPU-specific context data for the named CPU type.  If the
  // context data does not match the CPU type or does not exist, returns
  // NULL.
  const MDRawContextX86* GetContextX86() const;
  const MDRawContextPPC* GetContextPPC() const;

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class MinidumpThread;
  friend class MinidumpException;

  explicit MinidumpContext(Minidump* minidump);

  bool Read(u_int32_t expected_size);

  // Free the CPU-specific context structure.
  void FreeContext();

  // If the minidump contains a SYSTEM_INFO_STREAM, makes sure that the
  // system info stream gives an appropriate CPU type matching the context
  // CPU type in context_cpu_type.  Returns false if the CPU type does not
  // match.  Returns true if the CPU type matches or if the minidump does
  // not contain a system info stream.
  bool CheckAgainstSystemInfo(u_int32_t context_cpu_type);

  // The CPU-specific context structure.
  union {
    MDRawContextBase* base;
    MDRawContextX86*  x86;
    MDRawContextPPC*  ppc;
  } context_;
};


// MinidumpMemoryRegion does not wrap any MDRaw structure, and only contains
// a reference to an MDMemoryDescriptor.  This object is intended to wrap
// portions of a minidump file that contain memory dumps.  In normal
// minidumps, each MinidumpThread owns a MinidumpMemoryRegion corresponding
// to the thread's stack memory.  MinidumpMemoryList also gives access to
// memory regions in its list as MinidumpMemoryRegions.  This class
// adheres to MemoryRegion so that it may be used as a data provider to
// the Stackwalker family of classes.
class MinidumpMemoryRegion : public MinidumpObject,
                             public MemoryRegion {
 public:
  ~MinidumpMemoryRegion();

  // Returns a pointer to the base of the memory region.  Returns the
  // cached value if available, otherwise, reads the minidump file and
  // caches the memory region.
  const u_int8_t* GetMemory();

  // The address of the base of the memory region.
  u_int64_t GetBase();

  // The size, in bytes, of the memory region.
  u_int32_t GetSize();

  // Frees the cached memory region, if cached.
  void FreeMemory();

  // Obtains the value of memory at the pointer specified by address.
  bool GetMemoryAtAddress(u_int64_t address, u_int8_t*  value);
  bool GetMemoryAtAddress(u_int64_t address, u_int16_t* value);
  bool GetMemoryAtAddress(u_int64_t address, u_int32_t* value);
  bool GetMemoryAtAddress(u_int64_t address, u_int64_t* value);

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class MinidumpThread;
  friend class MinidumpMemoryList;

  explicit MinidumpMemoryRegion(Minidump* minidump);

  // Identify the base address and size of the memory region, and the
  // location it may be found in the minidump file.
  void SetDescriptor(MDMemoryDescriptor* descriptor);

  // Implementation for GetMemoryAtAddress
  template<typename T> bool GetMemoryAtAddressInternal(u_int64_t address,
                                                       T*        value);

  // Base address and size of the memory region, and its position in the
  // minidump file.
  MDMemoryDescriptor* descriptor_;

  // Cached memory.
  vector<u_int8_t>*   memory_;
};


// MinidumpThread contains information about a thread of execution,
// including a snapshot of the thread's stack and CPU context.  For
// the thread that caused an exception, the context carried by
// MinidumpException is probably desired instead of the CPU context
// provided here.
class MinidumpThread : public MinidumpObject {
 public:
  ~MinidumpThread();

  const MDRawThread* thread() const { return valid_ ? &thread_ : NULL; }
  MinidumpMemoryRegion* GetMemory();
  MinidumpContext* GetContext();

  // The thread ID is used to determine if a thread is the exception thread,
  // so a special getter is provided to retrieve this data from the
  // MDRawThread structure.
  u_int32_t GetThreadID();

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  // These objects are managed by MinidumpThreadList.
  friend class MinidumpThreadList;

  explicit MinidumpThread(Minidump* minidump);

  // This works like MinidumpStream::Read, but is driven by
  // MinidumpThreadList.  No size checking is done, because
  // MinidumpThreadList handles that directly.
  bool Read();

  MDRawThread           thread_;
  MinidumpMemoryRegion* memory_;
  MinidumpContext*      context_;
};


// MinidumpThreadList contains all of the threads (as MinidumpThreads) in
// a process.
class MinidumpThreadList : public MinidumpStream {
 public:
  ~MinidumpThreadList();

  unsigned int thread_count() const { return valid_ ? thread_count_ : 0; }

  // Sequential access to threads.
  MinidumpThread* GetThreadAtIndex(unsigned int index) const;

  // Random access to threads.
  MinidumpThread* GetThreadByID(u_int32_t thread_id);

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class Minidump;

  typedef map<u_int32_t, MinidumpThread*> IDToThreadMap;
  typedef vector<MinidumpThread> MinidumpThreads;

  static const u_int32_t kStreamType = THREAD_LIST_STREAM;

  explicit MinidumpThreadList(Minidump* aMinidump);

  bool Read(u_int32_t aExpectedSize);

  // Access to threads using the thread ID as the key.
  IDToThreadMap    id_to_thread_map_;

  // The list of threads.
  MinidumpThreads* threads_;
  u_int32_t        thread_count_;
};


// MinidumpModule wraps MDRawModule, which contains information about loaded
// code modules.  Access is provided to various data referenced indirectly
// by MDRawModule, such as the module's name and a specification for where
// to locate debugging information for the module.
class MinidumpModule : public MinidumpObject {
 public:
  ~MinidumpModule();

  const MDRawModule* module() const { return valid_ ? &module_ : 0; }
  u_int64_t base_address() const {
      return valid_ ? module_.base_of_image : static_cast<u_int64_t>(-1); }
  u_int32_t size() const { return valid_ ? module_.size_of_image : 0; }

  // The name of the file containing this module's code (exe, dll, so,
  // dylib).
  const string* GetName();

  // The CodeView record, which contains information to locate the module's
  // debugging information (pdb).  This is returned as u_int8_t* because
  // the data can be one of two types: MDCVInfoPDB20* or MDCVInfoPDB70*.
  // Check the record's signature in the first four bytes to differentiate.
  // Current toolchains generate modules which carry MDCVInfoPDB70.
  const u_int8_t* GetCVRecord();

  // The miscellaneous debug record, which is obsolete.  Current toolchains
  // do not generate this type of debugging information (dbg), and this
  // field is not expected to be present.
  const MDImageDebugMisc* GetMiscRecord();

  // The filename of the file containing debugging information for this
  // module.  This data is supplied by the CodeView record, if present, or
  // the miscellaneous debug record.  As such, it will reference either a
  // pdb or dbg file.
  const string* GetDebugFilename();

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  // These objects are managed by MinidumpModuleList.
  friend class MinidumpModuleList;

  explicit MinidumpModule(Minidump* minidump);

  // This works like MinidumpStream::Read, but is driven by
  // MinidumpModuleList.  No size checking is done, because
  // MinidumpModuleList handles that directly.
  bool Read();

  MDRawModule       module_;

  // Cached module name.
  const string*     name_;

  // Cached CodeView record - this is MDCVInfoPDB20 or (likely)
  // MDCVInfoPDB70.  Stored as a u_int8_t because the structure contains
  // a variable-sized string and its exact size cannot be known until it
  // is processed.
  vector<u_int8_t>* cv_record_;

  // Cached MDImageDebugMisc (usually not present), stored as u_int8_t
  // because the structure contains a variable-sized string and its exact
  // size cannot be known until it is processed.
  vector<u_int8_t>* misc_record_;

  // Cached debug filename.
  const string*     debug_filename_;
};


// MinidumpModuleList contains all of the loaded code modules for a process
// in the form of MinidumpModules.  It maintains a map of these modules
// so that it may easily provide a code module corresponding to a specific
// address.
class MinidumpModuleList : public MinidumpStream {
 public:
  ~MinidumpModuleList();

  unsigned int module_count() const { return valid_ ? module_count_ : 0; }

  // Sequential access to modules.
  MinidumpModule* GetModuleAtIndex(unsigned int index) const;

  // Random access to modules.  Returns the module whose code is present
  // at the address identified by address.
  MinidumpModule* GetModuleForAddress(u_int64_t address);

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class Minidump;

  typedef vector<MinidumpModule> MinidumpModules;

  static const u_int32_t kStreamType = MODULE_LIST_STREAM;

  explicit MinidumpModuleList(Minidump* minidump);

  bool Read(u_int32_t expected_size);

  // Access to modules using addresses as the key.
  RangeMap<u_int64_t, unsigned int> range_map_;

  MinidumpModules*                  modules_;
  u_int32_t                         module_count_;
};


// MinidumpMemoryList corresponds to a minidump's MEMORY_LIST_STREAM stream,
// which references the snapshots of all of the memory regions contained
// within the minidump.  For a normal minidump, this includes stack memory
// (also referenced by each MinidumpThread, in fact, the MDMemoryDescriptors
// here and in MDRawThread both point to exactly the same data in a
// minidump file, conserving space), as well as a 256-byte snapshot of memory
// surrounding the instruction pointer in the case of an exception.  Other
// types of minidumps may contain significantly more memory regions.  Full-
// memory minidumps contain all of a process' mapped memory.
class MinidumpMemoryList : public MinidumpStream {
 public:
  ~MinidumpMemoryList();

  unsigned int region_count() const { return valid_ ? region_count_ : 0; }

  // Sequential access to memory regions.
  MinidumpMemoryRegion* GetMemoryRegionAtIndex(unsigned int index);

  // Random access to memory regions.  Returns the region encompassing
  // the address identified by address.
  MinidumpMemoryRegion* GetMemoryRegionForAddress(u_int64_t address);

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class Minidump;

  typedef vector<MDMemoryDescriptor>   MemoryDescriptors;
  typedef vector<MinidumpMemoryRegion> MemoryRegions;

  static const u_int32_t kStreamType = MEMORY_LIST_STREAM;

  explicit MinidumpMemoryList(Minidump* minidump);

  bool Read(u_int32_t expected_size);

  // Access to memory regions using addresses as the key.
  RangeMap<u_int64_t, unsigned int> range_map_;

  // The list of descriptors.  This is maintained separately from the list
  // of regions, because MemoryRegion doesn't own its MemoryDescriptor, it
  // maintains a pointer to it.  descriptors_ provides the storage for this
  // purpose.
  MemoryDescriptors*                descriptors_;

  // The list of regions.
  MemoryRegions*                    regions_;
  u_int32_t                         region_count_;
};


// MinidumpException wraps MDRawExceptionStream, which contains information
// about the exception that caused the minidump to be generated, if the
// minidump was generated in an exception handler called as a result of
// an exception.  It also provides access to a MinidumpContext object,
// which contains the CPU context for the exception thread at the time
// the exception occurred.
class MinidumpException : public MinidumpStream {
 public:
  ~MinidumpException();

  const MDRawExceptionStream* exception() const {
      return valid_ ? &exception_ : 0; }

  // The thread ID is used to determine if a thread is the exception thread,
  // so a special getter is provided to retrieve this data from the
  // MDRawExceptionStream structure.
  u_int32_t GetThreadID();

  MinidumpContext* GetContext();

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class Minidump;

  static const u_int32_t kStreamType = EXCEPTION_STREAM;

  explicit MinidumpException(Minidump* minidump);

  bool Read(u_int32_t expected_size);

  MDRawExceptionStream exception_;
  MinidumpContext*     context_;
};


// MinidumpSystemInfo wraps MDRawSystemInfo and provides information about
// the system on which the minidump was generated.  See also MinidumpMiscInfo.
class MinidumpSystemInfo : public MinidumpStream {
 public:
  ~MinidumpSystemInfo();

  const MDRawSystemInfo* system_info() const {
      return valid_ ? &system_info_ : 0; }

  // I don't know what CSD stands for, but this field is documented as
  // returning a textual representation of the OS service pack.  On other
  // platforms, this provides additional information about an OS version
  // level beyond major.minor.micro.  Returns NULL if unknown.
  const string* GetCSDVersion();

  // If a CPU vendor string can be determined, returns a pointer to it,
  // otherwise, returns NULL.  CPU vendor strings can be determined from
  // x86 CPUs with CPUID 0.
  const string* GetCPUVendor();

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class Minidump;

  static const u_int32_t kStreamType = SYSTEM_INFO_STREAM;

  explicit MinidumpSystemInfo(Minidump* minidump);

  bool Read(u_int32_t expected_size);

  MDRawSystemInfo system_info_;

  // Textual representation of the OS service pack, for minidumps produced
  // by MiniDumpWriteDump on Windows.
  const string* csd_version_;

  // A string identifying the CPU vendor, if known.
  const string* cpu_vendor_;
};


// MinidumpMiscInfo wraps MDRawMiscInfo and provides information about
// the process that generated the minidump, and optionally additional system
// information.  See also MinidumpSystemInfo.
class MinidumpMiscInfo : public MinidumpStream {
 public:
  const MDRawMiscInfo* misc_info() const { return valid_ ? &misc_info_ : 0; }

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  friend class Minidump;

  static const u_int32_t kStreamType = MISC_INFO_STREAM;

  explicit MinidumpMiscInfo(Minidump* minidump_);

  bool Read(u_int32_t expected_size_);

  MDRawMiscInfo misc_info_;
};


// Minidump is the user's interface to a minidump file.  It wraps MDRawHeader
// and provides access to the minidump's top-level stream directory.
class Minidump {
 public:
  // path is the pathname of a file containing the minidump.
  explicit Minidump(const string& path);

  ~Minidump();

  const MDRawHeader* header() const { return valid_ ? &header_ : 0; }

  // Reads the minidump file's header and top-level stream directory.
  // The minidump is expected to be positioned at the beginning of the
  // header.  Read() sets up the stream list and map, and validates the
  // Minidump object.
  bool Read();

  // The next 6 methods are stubs that call GetStream.  They exist to
  // force code generation of the templatized API within the module, and
  // to avoid exposing an ugly API (GetStream needs to accept a garbage
  // parameter).
  MinidumpThreadList* GetThreadList();
  MinidumpModuleList* GetModuleList();
  MinidumpMemoryList* GetMemoryList();
  MinidumpException* GetException();
  MinidumpSystemInfo* GetSystemInfo();
  MinidumpMiscInfo* GetMiscInfo();

  // The next set of methods are provided for users who wish to access
  // data in minidump files directly, while leveraging the rest of
  // this class and related classes to handle the basic minidump
  // structure and known stream types.

  unsigned int GetDirectoryEntryCount() const {
      return valid_ ? header_.stream_count : 0; }
  const MDRawDirectory* GetDirectoryEntryAtIndex(unsigned int index) const;

  // The next 2 methods are lower-level I/O routines.  They use fd_.

  // Reads count bytes from the minidump at the current position into
  // the storage area pointed to by bytes.  bytes must be of sufficient
  // size.  After the read, the file position is advanced by count.
  bool ReadBytes(void* bytes, size_t count);

  // Sets the position of the minidump file to offset.
  bool SeekSet(off_t offset);

  // The next 2 methods are medium-level I/O routines.

  // ReadString returns a string which is owned by the caller!  offset
  // specifies the offset that a length-encoded string is stored at in the
  // minidump file.
  string* ReadString(off_t offset);

  // SeekToStreamType positions the file at the beginning of a stream
  // identified by stream_type, and informs the caller of the stream's
  // length by setting *stream_length.  Because stream_map maps each stream
  // type to only one stream in the file, this might mislead the user into
  // thinking that the stream that this seeks to is the only stream with
  // type stream_type.  That can't happen for streams that these classes
  // deal with directly, because they're only supposed to be present in the
  // file singly, and that's verified when stream_map_ is built.  Users who
  // are looking for other stream types should be aware of this
  // possibility, and consider using GetDirectoryEntryAtIndex (possibly
  // with GetDirectoryEntryCount) if expecting multiple streams of the same
  // type in a single minidump file.
  bool SeekToStreamType(u_int32_t stream_type, u_int32_t* stream_length);

  bool swap() const { return valid_ ? swap_ : false; }

  // Print a human-readable representation of the object to stdout.
  void Print();

 private:
  // MinidumpStreamInfo is used in the MinidumpStreamMap.  It lets
  // the Minidump object locate interesting streams quickly, and
  // provides a convenient place to stash MinidumpStream objects.
  struct MinidumpStreamInfo {
    MinidumpStreamInfo() : stream_index(0), stream(NULL) {}
    ~MinidumpStreamInfo() { delete stream; }

    // Index into the MinidumpDirectoryEntries vector
    unsigned int    stream_index;

    // Pointer to the stream if cached, or NULL if not yet populated
    MinidumpStream* stream;
  };

  typedef vector<MDRawDirectory> MinidumpDirectoryEntries;
  typedef map<u_int32_t, MinidumpStreamInfo> MinidumpStreamMap;

  template<typename T> T* GetStream(T** stream);

  // Opens the minidump file, or if already open, seeks to the beginning.
  bool Open();

  MDRawHeader               header_;

  // The list of streams.
  MinidumpDirectoryEntries* directory_;

  // Access to streams using the stream type as the key.
  MinidumpStreamMap*        stream_map_;

  // The pathname of the minidump file to process, set in the constructor.
  const string              path_;

  // The file descriptor for all file I/O.  Used by ReadBytes and SeekSet.
  // Set based on the |path_| member by Open, which is called by Read.
  int                       fd_;

  // swap_ is true if the minidump file should be byte-swapped.  If the
  // minidump was produced by a CPU that is other-endian than the CPU
  // processing the minidump, this will be true.  If the two CPUs are
  // same-endian, this will be false.
  bool                      swap_;

  // Validity of the Minidump structure, false immediately after
  // construction or after a failed Read(); true following a successful
  // Read().
  bool                      valid_;
};


}  // namespace google_airbag


#endif  // PROCESSOR_MINIDUMP_H__