aboutsummaryrefslogtreecommitdiff
path: root/src/processor/minidump_stackwalk.cc
blob: 2c3ab359d5748a181e00bbda3536f8ce19be965e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// minidump_stackwalk.cc: Process a minidump with MinidumpProcessor, printing
// the results, including stack traces.
//
// Author: Mark Mentovai

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>

#include "google_breakpad/processor/basic_source_line_resolver.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/code_module.h"
#include "google_breakpad/processor/code_modules.h"
#include "google_breakpad/processor/minidump.h"
#include "google_breakpad/processor/minidump_processor.h"
#include "google_breakpad/processor/process_state.h"
#include "google_breakpad/processor/stack_frame_cpu.h"
#include "processor/logging.h"
#include "processor/pathname_stripper.h"
#include "processor/scoped_ptr.h"
#include "processor/simple_symbol_supplier.h"

namespace {

using std::string;
using std::vector;
using google_breakpad::BasicSourceLineResolver;
using google_breakpad::CallStack;
using google_breakpad::CodeModule;
using google_breakpad::CodeModules;
using google_breakpad::MinidumpModule;
using google_breakpad::MinidumpProcessor;
using google_breakpad::PathnameStripper;
using google_breakpad::ProcessState;
using google_breakpad::scoped_ptr;
using google_breakpad::SimpleSymbolSupplier;
using google_breakpad::StackFrame;
using google_breakpad::StackFramePPC;
using google_breakpad::StackFrameSPARC;
using google_breakpad::StackFrameX86;
using google_breakpad::StackFrameAMD64;
using google_breakpad::StackFrameARM;

// Separator character for machine readable output.
static const char kOutputSeparator = '|';

// PrintRegister prints a register's name and value to stdout.  It will
// print four registers on a line.  For the first register in a set,
// pass 0 for |sequence|.  For registers in a set, pass the most recent
// return value of PrintRegister.  Note that PrintRegister will print a
// newline before the first register (with |sequence| set to 0) is printed.
// The caller is responsible for printing the final newline after a set
// of registers is completely printed, regardless of the number of calls
// to PrintRegister.
static int PrintRegister(const char *name, u_int32_t value, int sequence) {
  if (sequence % 4 == 0) {
    printf("\n ");
  }
  printf(" %5s = 0x%08x", name, value);
  return ++sequence;
}

// StripSeparator takes a string |original| and returns a copy
// of the string with all occurences of |kOutputSeparator| removed.
static string StripSeparator(const string &original) {
  string result = original;
  string::size_type position = 0;
  while ((position = result.find(kOutputSeparator, position)) != string::npos) {
    result.erase(position, 1);
  }
  position = 0;
  while ((position = result.find('\n', position)) != string::npos) {
    result.erase(position, 1);
  }
  return result;
}

// PrintStack prints the call stack in |stack| to stdout, in a reasonably
// useful form.  Module, function, and source file names are displayed if
// they are available.  The code offset to the base code address of the
// source line, function, or module is printed, preferring them in that
// order.  If no source line, function, or module information is available,
// an absolute code offset is printed.
//
// If |cpu| is a recognized CPU name, relevant register state for each stack
// frame printed is also output, if available.
static void PrintStack(const CallStack *stack, const string &cpu) {
  int frame_count = stack->frames()->size();
  for (int frame_index = 0; frame_index < frame_count; ++frame_index) {
    const StackFrame *frame = stack->frames()->at(frame_index);
    printf("%2d  ", frame_index);

    if (frame->module) {
      printf("%s", PathnameStripper::File(frame->module->code_file()).c_str());
      if (!frame->function_name.empty()) {
        printf("!%s", frame->function_name.c_str());
        if (!frame->source_file_name.empty()) {
          string source_file = PathnameStripper::File(frame->source_file_name);
          printf(" [%s : %d + 0x%" PRIx64 "]",
                 source_file.c_str(),
                 frame->source_line,
                 frame->instruction - frame->source_line_base);
        } else {
          printf(" + 0x%" PRIx64, frame->instruction - frame->function_base);
        }
      } else {
        printf(" + 0x%" PRIx64,
               frame->instruction - frame->module->base_address());
      }
    } else {
      printf("0x%" PRIx64, frame->instruction);
    }

    int sequence = 0;
    if (cpu == "x86") {
      const StackFrameX86 *frame_x86 =
          reinterpret_cast<const StackFrameX86*>(frame);

      if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EIP)
        sequence = PrintRegister("eip", frame_x86->context.eip, sequence);
      if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_ESP)
        sequence = PrintRegister("esp", frame_x86->context.esp, sequence);
      if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EBP)
        sequence = PrintRegister("ebp", frame_x86->context.ebp, sequence);
      if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EBX)
        sequence = PrintRegister("ebx", frame_x86->context.ebx, sequence);
      if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_ESI)
        sequence = PrintRegister("esi", frame_x86->context.esi, sequence);
      if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EDI)
        sequence = PrintRegister("edi", frame_x86->context.edi, sequence);
      if (frame_x86->context_validity == StackFrameX86::CONTEXT_VALID_ALL) {
        sequence = PrintRegister("eax", frame_x86->context.eax, sequence);
        sequence = PrintRegister("ecx", frame_x86->context.ecx, sequence);
        sequence = PrintRegister("edx", frame_x86->context.edx, sequence);
        sequence = PrintRegister("efl", frame_x86->context.eflags, sequence);
      }
      const char *trust_name;
      switch (frame_x86->trust) {
        default:
        case StackFrameX86::FRAME_TRUST_NONE:
          trust_name = "unknown";
          break;
        case StackFrameX86::FRAME_TRUST_CONTEXT:
          trust_name = "given as instruction pointer in context";
          break;
        case StackFrameX86::FRAME_TRUST_CFI:
          trust_name = "call frame info";
          break;
        case StackFrameX86::FRAME_TRUST_CFI_SCAN:
          trust_name = "call frame info with scanning";
          break;
        case StackFrameX86::FRAME_TRUST_FP:
          trust_name = "previous frame's frame pointer";
          break;
        case StackFrameX86::FRAME_TRUST_SCAN:
          trust_name = "stack scanning";
          break;
      }
      printf("\n    Found by: %s", trust_name);
    } else if (cpu == "ppc") {
      const StackFramePPC *frame_ppc =
          reinterpret_cast<const StackFramePPC*>(frame);

      if (frame_ppc->context_validity & StackFramePPC::CONTEXT_VALID_SRR0)
        sequence = PrintRegister("srr0", frame_ppc->context.srr0, sequence);
      if (frame_ppc->context_validity & StackFramePPC::CONTEXT_VALID_GPR1)
        sequence = PrintRegister("r1", frame_ppc->context.gpr[1], sequence);
    } else if (cpu == "amd64") {
      const StackFrameAMD64 *frame_amd64 =
        reinterpret_cast<const StackFrameAMD64*>(frame);

      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_RBX)
        sequence = PrintRegister("rbx", frame_amd64->context.rbx, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_R12)
        sequence = PrintRegister("r12", frame_amd64->context.r12, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_R13)
        sequence = PrintRegister("r13", frame_amd64->context.r13, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_R14)
        sequence = PrintRegister("r14", frame_amd64->context.r14, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_R15)
        sequence = PrintRegister("r15", frame_amd64->context.r15, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_RIP)
        sequence = PrintRegister("rip", frame_amd64->context.rip, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_RSP)
        sequence = PrintRegister("rsp", frame_amd64->context.rsp, sequence);
      if (frame_amd64->context_validity & StackFrameAMD64::CONTEXT_VALID_RBP)
        sequence = PrintRegister("rbp", frame_amd64->context.rbp, sequence);
    } else if (cpu == "sparc") {
      const StackFrameSPARC *frame_sparc =
          reinterpret_cast<const StackFrameSPARC*>(frame);

      if (frame_sparc->context_validity & StackFrameSPARC::CONTEXT_VALID_SP)
        sequence = PrintRegister("sp", frame_sparc->context.g_r[14], sequence);
      if (frame_sparc->context_validity & StackFrameSPARC::CONTEXT_VALID_FP)
        sequence = PrintRegister("fp", frame_sparc->context.g_r[30], sequence);
      if (frame_sparc->context_validity & StackFrameSPARC::CONTEXT_VALID_PC)
        sequence = PrintRegister("pc", frame_sparc->context.pc, sequence);
    } else if (cpu == "arm") {
      const StackFrameARM *frame_arm =
          reinterpret_cast<const StackFrameARM*>(frame);

      // General-purpose callee-saves registers.
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R4)
        sequence = PrintRegister("r4", frame_arm->context.iregs[4], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R5)
        sequence = PrintRegister("r5", frame_arm->context.iregs[5], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R6)
        sequence = PrintRegister("r6", frame_arm->context.iregs[6], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R7)
        sequence = PrintRegister("r7", frame_arm->context.iregs[7], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R8)
        sequence = PrintRegister("r8", frame_arm->context.iregs[8], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R9)
        sequence = PrintRegister("r9", frame_arm->context.iregs[9], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_R10)
        sequence = PrintRegister("r10", frame_arm->context.iregs[10], sequence);

      // Registers with a dedicated or conventional purpose.
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_FP)
        sequence = PrintRegister("fp", frame_arm->context.iregs[11], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_SP)
        sequence = PrintRegister("sp", frame_arm->context.iregs[13], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_LR)
        sequence = PrintRegister("lr", frame_arm->context.iregs[14], sequence);
      if (frame_arm->context_validity & StackFrameARM::CONTEXT_VALID_PC)
        sequence = PrintRegister("pc", frame_arm->context.iregs[15], sequence);
    }
    printf("\n");
  }
}

// PrintStackMachineReadable prints the call stack in |stack| to stdout,
// in the following machine readable pipe-delimited text format:
// thread number|frame number|module|function|source file|line|offset
//
// Module, function, source file, and source line may all be empty
// depending on availability.  The code offset follows the same rules as
// PrintStack above.
static void PrintStackMachineReadable(int thread_num, const CallStack *stack) {
  int frame_count = stack->frames()->size();
  for (int frame_index = 0; frame_index < frame_count; ++frame_index) {
    const StackFrame *frame = stack->frames()->at(frame_index);
    printf("%d%c%d%c", thread_num, kOutputSeparator, frame_index,
           kOutputSeparator);

    if (frame->module) {
      assert(!frame->module->code_file().empty());
      printf("%s", StripSeparator(PathnameStripper::File(
                     frame->module->code_file())).c_str());
      if (!frame->function_name.empty()) {
        printf("%c%s", kOutputSeparator,
               StripSeparator(frame->function_name).c_str());
        if (!frame->source_file_name.empty()) {
          printf("%c%s%c%d%c0x%" PRIx64,
                 kOutputSeparator,
                 StripSeparator(frame->source_file_name).c_str(),
                 kOutputSeparator,
                 frame->source_line,
                 kOutputSeparator,
                 frame->instruction - frame->source_line_base);
        } else {
          printf("%c%c%c0x%" PRIx64,
                 kOutputSeparator,  // empty source file
                 kOutputSeparator,  // empty source line
                 kOutputSeparator,
                 frame->instruction - frame->function_base);
        }
      } else {
        printf("%c%c%c%c0x%" PRIx64,
               kOutputSeparator,  // empty function name
               kOutputSeparator,  // empty source file
               kOutputSeparator,  // empty source line
               kOutputSeparator,
               frame->instruction - frame->module->base_address());
      }
    } else {
      // the printf before this prints a trailing separator for module name
      printf("%c%c%c%c0x%" PRIx64,
             kOutputSeparator,  // empty function name
             kOutputSeparator,  // empty source file
             kOutputSeparator,  // empty source line
             kOutputSeparator,
             frame->instruction);
    }
    printf("\n");
  }
}

static void PrintModules(const CodeModules *modules) {
  if (!modules)
    return;

  printf("\n");
  printf("Loaded modules:\n");

  u_int64_t main_address = 0;
  const CodeModule *main_module = modules->GetMainModule();
  if (main_module) {
    main_address = main_module->base_address();
  }

  unsigned int module_count = modules->module_count();
  for (unsigned int module_sequence = 0;
       module_sequence < module_count;
       ++module_sequence) {
    const CodeModule *module = modules->GetModuleAtSequence(module_sequence);
    u_int64_t base_address = module->base_address();
    printf("0x%08" PRIx64 " - 0x%08" PRIx64 "  %s  %s%s\n",
           base_address, base_address + module->size() - 1,
           PathnameStripper::File(module->code_file()).c_str(),
           module->version().empty() ? "???" : module->version().c_str(),
           main_module != NULL && base_address == main_address ?
               "  (main)" : "");
  }
}

// PrintModulesMachineReadable outputs a list of loaded modules,
// one per line, in the following machine-readable pipe-delimited
// text format:
// Module|{Module Filename}|{Version}|{Debug Filename}|{Debug Identifier}|
// {Base Address}|{Max Address}|{Main}
static void PrintModulesMachineReadable(const CodeModules *modules) {
  if (!modules)
    return;

  u_int64_t main_address = 0;
  const CodeModule *main_module = modules->GetMainModule();
  if (main_module) {
    main_address = main_module->base_address();
  }

  unsigned int module_count = modules->module_count();
  for (unsigned int module_sequence = 0;
       module_sequence < module_count;
       ++module_sequence) {
    const CodeModule *module = modules->GetModuleAtSequence(module_sequence);
    u_int64_t base_address = module->base_address();
    printf("Module%c%s%c%s%c%s%c%s%c0x%08" PRIx64 "%c0x%08" PRIx64 "%c%d\n",
           kOutputSeparator,
           StripSeparator(PathnameStripper::File(module->code_file())).c_str(),
           kOutputSeparator, StripSeparator(module->version()).c_str(),
           kOutputSeparator,
           StripSeparator(PathnameStripper::File(module->debug_file())).c_str(),
           kOutputSeparator,
           StripSeparator(module->debug_identifier()).c_str(),
           kOutputSeparator, base_address,
           kOutputSeparator, base_address + module->size() - 1,
           kOutputSeparator,
           main_module != NULL && base_address == main_address ? 1 : 0);
  }
}

static void PrintProcessState(const ProcessState& process_state) {
  // Print OS and CPU information.
  string cpu = process_state.system_info()->cpu;
  string cpu_info = process_state.system_info()->cpu_info;
  printf("Operating system: %s\n", process_state.system_info()->os.c_str());
  printf("                  %s\n",
         process_state.system_info()->os_version.c_str());
  printf("CPU: %s\n", cpu.c_str());
  if (!cpu_info.empty()) {
    // This field is optional.
    printf("     %s\n", cpu_info.c_str());
  }
  printf("     %d CPU%s\n",
         process_state.system_info()->cpu_count,
         process_state.system_info()->cpu_count != 1 ? "s" : "");
  printf("\n");

  // Print crash information.
  if (process_state.crashed()) {
    printf("Crash reason:  %s\n", process_state.crash_reason().c_str());
    printf("Crash address: 0x%" PRIx64 "\n", process_state.crash_address());
  } else {
    printf("No crash\n");
  }

  string assertion = process_state.assertion();
  if (!assertion.empty()) {
    printf("Assertion: %s\n", assertion.c_str());
  }

  // If the thread that requested the dump is known, print it first.
  int requesting_thread = process_state.requesting_thread();
  if (requesting_thread != -1) {
    printf("\n");
    printf("Thread %d (%s)\n",
          requesting_thread,
          process_state.crashed() ? "crashed" :
                                    "requested dump, did not crash");
    PrintStack(process_state.threads()->at(requesting_thread), cpu);
  }

  // Print all of the threads in the dump.
  int thread_count = process_state.threads()->size();
  for (int thread_index = 0; thread_index < thread_count; ++thread_index) {
    if (thread_index != requesting_thread) {
      // Don't print the crash thread again, it was already printed.
      printf("\n");
      printf("Thread %d\n", thread_index);
      PrintStack(process_state.threads()->at(thread_index), cpu);
    }
  }

  PrintModules(process_state.modules());
}

static void PrintProcessStateMachineReadable(const ProcessState& process_state)
{
  // Print OS and CPU information.
  // OS|{OS Name}|{OS Version}
  // CPU|{CPU Name}|{CPU Info}|{Number of CPUs}
  printf("OS%c%s%c%s\n", kOutputSeparator,
         StripSeparator(process_state.system_info()->os).c_str(),
         kOutputSeparator,
         StripSeparator(process_state.system_info()->os_version).c_str());
  printf("CPU%c%s%c%s%c%d\n", kOutputSeparator,
         StripSeparator(process_state.system_info()->cpu).c_str(),
         kOutputSeparator,
         // this may be empty
         StripSeparator(process_state.system_info()->cpu_info).c_str(),
         kOutputSeparator,
         process_state.system_info()->cpu_count);

  int requesting_thread = process_state.requesting_thread();

  // Print crash information.
  // Crash|{Crash Reason}|{Crash Address}|{Crashed Thread}
  printf("Crash%c", kOutputSeparator);
  if (process_state.crashed()) {
    printf("%s%c0x%" PRIx64 "%c",
           StripSeparator(process_state.crash_reason()).c_str(),
           kOutputSeparator, process_state.crash_address(), kOutputSeparator);
  } else {
    // print assertion info, if available, in place of crash reason,
    // instead of the unhelpful "No crash"
    string assertion = process_state.assertion();
    if (!assertion.empty()) {
      printf("%s%c%c", StripSeparator(assertion).c_str(),
             kOutputSeparator, kOutputSeparator);
    } else {
      printf("No crash%c%c", kOutputSeparator, kOutputSeparator);
    }
  }

  if (requesting_thread != -1) {
    printf("%d\n", requesting_thread);
  } else {
    printf("\n");
  }

  PrintModulesMachineReadable(process_state.modules());

  // blank line to indicate start of threads
  printf("\n");

  // If the thread that requested the dump is known, print it first.
  if (requesting_thread != -1) {
    PrintStackMachineReadable(requesting_thread,
                              process_state.threads()->at(requesting_thread));
  }

  // Print all of the threads in the dump.
  int thread_count = process_state.threads()->size();
  for (int thread_index = 0; thread_index < thread_count; ++thread_index) {
    if (thread_index != requesting_thread) {
      // Don't print the crash thread again, it was already printed.
      PrintStackMachineReadable(thread_index,
                                process_state.threads()->at(thread_index));
    }
  }
}

// Processes |minidump_file| using MinidumpProcessor.  |symbol_path|, if
// non-empty, is the base directory of a symbol storage area, laid out in
// the format required by SimpleSymbolSupplier.  If such a storage area
// is specified, it is made available for use by the MinidumpProcessor.
//
// Returns the value of MinidumpProcessor::Process.  If processing succeeds,
// prints identifying OS and CPU information from the minidump, crash
// information if the minidump was produced as a result of a crash, and
// call stacks for each thread contained in the minidump.  All information
// is printed to stdout.
static bool PrintMinidumpProcess(const string &minidump_file,
                                 const vector<string> &symbol_paths,
                                 bool machine_readable) {
  scoped_ptr<SimpleSymbolSupplier> symbol_supplier;
  if (!symbol_paths.empty()) {
    // TODO(mmentovai): check existence of symbol_path if specified?
    symbol_supplier.reset(new SimpleSymbolSupplier(symbol_paths));
  }

  BasicSourceLineResolver resolver;
  MinidumpProcessor minidump_processor(symbol_supplier.get(), &resolver);

  // Process the minidump.
  ProcessState process_state;
  if (minidump_processor.Process(minidump_file, &process_state) !=
      google_breakpad::PROCESS_OK) {
    BPLOG(ERROR) << "MinidumpProcessor::Process failed";
    return false;
  }

  if (machine_readable) {
    PrintProcessStateMachineReadable(process_state);
  } else {
    PrintProcessState(process_state);
  }

  return true;
}

}  // namespace

static void usage(const char *program_name) {
  fprintf(stderr, "usage: %s [-m] <minidump-file> [symbol-path ...]\n"
          "    -m : Output in machine-readable format\n",
          program_name);
}

int main(int argc, char **argv) {
  BPLOG_INIT(&argc, &argv);

  if (argc < 2) {
    usage(argv[0]);
    return 1;
  }

  const char *minidump_file;
  bool machine_readable;
  int symbol_path_arg;

  if (strcmp(argv[1], "-m") == 0) {
    if (argc < 3) {
      usage(argv[0]);
      return 1;
    }

    machine_readable = true;
    minidump_file = argv[2];
    symbol_path_arg = 3;
  } else {
    machine_readable = false;
    minidump_file = argv[1];
    symbol_path_arg = 2;
  }

  // extra arguments are symbol paths
  std::vector<std::string> symbol_paths;
  if (argc > symbol_path_arg) {
    for (int argi = symbol_path_arg; argi < argc; ++argi)
      symbol_paths.push_back(argv[argi]);
  }

  return PrintMinidumpProcess(minidump_file,
                              symbol_paths,
                              machine_readable) ? 0 : 1;
}