1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
// Copyright (c) 2006, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// minidump_stackwalk.cc: Process a minidump with MinidumpProcessor, printing
// the results, including stack traces.
//
// Author: Mark Mentovai
#include <cstdio>
#include <cstdlib>
#include <string>
#include "google_airbag/processor/call_stack.h"
#include "google_airbag/processor/code_module.h"
#include "google_airbag/processor/code_modules.h"
#include "google_airbag/processor/minidump.h"
#include "google_airbag/processor/minidump_processor.h"
#include "google_airbag/processor/process_state.h"
#include "google_airbag/processor/stack_frame_cpu.h"
#include "processor/pathname_stripper.h"
#include "processor/scoped_ptr.h"
#include "processor/simple_symbol_supplier.h"
namespace {
using std::string;
using google_airbag::CallStack;
using google_airbag::CodeModule;
using google_airbag::CodeModules;
using google_airbag::MinidumpModule;
using google_airbag::MinidumpProcessor;
using google_airbag::PathnameStripper;
using google_airbag::ProcessState;
using google_airbag::scoped_ptr;
using google_airbag::SimpleSymbolSupplier;
using google_airbag::StackFrame;
using google_airbag::StackFramePPC;
using google_airbag::StackFrameX86;
// PrintRegister prints a register's name and value to stdout. It will
// print four registers on a line. For the first register in a set,
// pass 0 for |sequence|. For registers in a set, pass the most recent
// return value of PrintRegister. Note that PrintRegister will print a
// newline before the first register (with |sequence| set to 0) is printed.
// The caller is responsible for printing the final newline after a set
// of registers is completely printed, regardless of the number of calls
// to PrintRegister.
static int PrintRegister(const char *name, u_int32_t value, int sequence) {
if (sequence % 4 == 0) {
printf("\n ");
}
printf(" %5s = 0x%08x", name, value);
return ++sequence;
}
// PrintStack prints the call stack in |stack| to stdout, in a reasonably
// useful form. Module, function, and source file names are displayed if
// they are available. The code offset to the base code address of the
// source line, function, or module is printed, preferring them in that
// order. If no source line, function, or module information is available,
// an absolute code offset is printed.
//
// If |cpu| is a recognized CPU name, relevant register state for each stack
// frame printed is also output, if available.
static void PrintStack(const CallStack *stack, const string &cpu) {
int frame_count = stack->frames()->size();
for (int frame_index = 0; frame_index < frame_count; ++frame_index) {
const StackFrame *frame = stack->frames()->at(frame_index);
printf("%2d ", frame_index);
if (frame->module) {
printf("%s", PathnameStripper::File(frame->module->code_file()).c_str());
if (!frame->function_name.empty()) {
printf("!%s", frame->function_name.c_str());
if (!frame->source_file_name.empty()) {
string source_file = PathnameStripper::File(frame->source_file_name);
printf(" [%s : %d + 0x%llx]", source_file.c_str(),
frame->source_line,
frame->instruction -
frame->source_line_base);
} else {
printf(" + 0x%llx", frame->instruction - frame->function_base);
}
} else {
printf(" + 0x%llx", frame->instruction - frame->module->base_address());
}
} else {
printf("0x%llx", frame->instruction);
}
int sequence = 0;
if (cpu == "x86") {
const StackFrameX86 *frame_x86 =
reinterpret_cast<const StackFrameX86*>(frame);
if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EIP)
sequence = PrintRegister("eip", frame_x86->context.eip, sequence);
if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_ESP)
sequence = PrintRegister("esp", frame_x86->context.esp, sequence);
if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EBP)
sequence = PrintRegister("ebp", frame_x86->context.ebp, sequence);
if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EBX)
sequence = PrintRegister("ebx", frame_x86->context.ebx, sequence);
if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_ESI)
sequence = PrintRegister("esi", frame_x86->context.esi, sequence);
if (frame_x86->context_validity & StackFrameX86::CONTEXT_VALID_EDI)
sequence = PrintRegister("edi", frame_x86->context.edi, sequence);
if (frame_x86->context_validity == StackFrameX86::CONTEXT_VALID_ALL) {
sequence = PrintRegister("eax", frame_x86->context.eax, sequence);
sequence = PrintRegister("ecx", frame_x86->context.ecx, sequence);
sequence = PrintRegister("edx", frame_x86->context.edx, sequence);
sequence = PrintRegister("efl", frame_x86->context.eflags, sequence);
}
} else if (cpu == "ppc") {
const StackFramePPC *frame_ppc =
reinterpret_cast<const StackFramePPC*>(frame);
if (frame_ppc->context_validity & StackFramePPC::CONTEXT_VALID_SRR0)
sequence = PrintRegister("srr0", frame_ppc->context.srr0, sequence);
if (frame_ppc->context_validity & StackFramePPC::CONTEXT_VALID_GPR1)
sequence = PrintRegister("r1", frame_ppc->context.gpr[1], sequence);
}
printf("\n");
}
}
static void PrintModules(const CodeModules *modules) {
if (!modules)
return;
printf("\n");
printf("Loaded modules:\n");
u_int64_t main_address = modules->GetMainModule()->base_address();
unsigned int module_count = modules->module_count();
for (unsigned int module_sequence = 0;
module_sequence < module_count;
++module_sequence) {
const CodeModule *module = modules->GetModuleAtSequence(module_sequence);
u_int64_t base_address = module->base_address();
printf("0x%08llx - 0x%08llx %s %s%s\n",
base_address, base_address + module->size() - 1,
PathnameStripper::File(module->code_file()).c_str(),
module->version().empty() ? "???" : module->version().c_str(),
module->base_address() == main_address ? " (main)" : "");
}
}
// Processes |minidump_file| using MinidumpProcessor. |symbol_path|, if
// non-empty, is the base directory of a symbol storage area, laid out in
// the format required by SimpleSymbolSupplier. If such a storage area
// is specified, it is made available for use by the MinidumpProcessor.
//
// Returns the value of MinidumpProcessor::Process. If processing succeeds,
// prints identifying OS and CPU information from the minidump, crash
// information if the minidump was produced as a result of a crash, and
// call stacks for each thread contained in the minidump. All information
// is printed to stdout.
static bool PrintMinidumpProcess(const string &minidump_file,
const string &symbol_path) {
scoped_ptr<SimpleSymbolSupplier> symbol_supplier;
if (!symbol_path.empty()) {
// TODO(mmentovai): check existence of symbol_path if specified?
symbol_supplier.reset(new SimpleSymbolSupplier(symbol_path));
}
MinidumpProcessor minidump_processor(symbol_supplier.get());
// Process the minidump.
scoped_ptr<ProcessState> process_state(
minidump_processor.Process(minidump_file));
if (!process_state.get()) {
fprintf(stderr, "MinidumpProcessor::Process failed\n");
return false;
}
// Print OS and CPU information.
string cpu = process_state->cpu();
string cpu_info = process_state->cpu_info();
printf("Operating system: %s\n", process_state->os().c_str());
printf(" %s\n", process_state->os_version().c_str());
printf("CPU: %s\n", cpu.c_str());
if (!cpu_info.empty()) {
// This field is optional.
printf(" %s\n", cpu_info.c_str());
}
printf("\n");
// Print crash information.
if (process_state->crashed()) {
printf("Crash reason: %s\n", process_state->crash_reason().c_str());
printf("Crash address: 0x%llx\n", process_state->crash_address());
} else {
printf("No crash\n");
}
// If the thread that requested the dump is known, print it first.
int requesting_thread = process_state->requesting_thread();
if (requesting_thread != -1) {
printf("\n");
printf("Thread %d (%s)\n",
requesting_thread,
process_state->crashed() ? "crashed" :
"requested dump, did not crash");
PrintStack(process_state->threads()->at(requesting_thread), cpu);
}
// Print all of the threads in the dump.
int thread_count = process_state->threads()->size();
for (int thread_index = 0; thread_index < thread_count; ++thread_index) {
if (thread_index != requesting_thread) {
// Don't print the crash thread again, it was already printed.
printf("\n");
printf("Thread %d\n", thread_index);
PrintStack(process_state->threads()->at(thread_index), cpu);
}
}
PrintModules(process_state->modules());
return true;
}
} // namespace
int main(int argc, char **argv) {
if (argc < 2 || argc > 3) {
fprintf(stderr, "usage: %s <minidump-file> [symbol-path]\n", argv[0]);
return 1;
}
const char *minidump_file = argv[1];
const char *symbol_path = "";
if (argc == 3) {
symbol_path = argv[2];
}
return PrintMinidumpProcess(minidump_file, symbol_path) ? 0 : 1;
}
|