1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
// Copyright (c) 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// stackwalker_mips.cc: MIPS-specific stackwalker.
//
// See stackwalker_mips.h for documentation.
//
// Author: Tata Elxsi
#include "common/scoped_ptr.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/code_modules.h"
#include "google_breakpad/processor/memory_region.h"
#include "google_breakpad/processor/source_line_resolver_interface.h"
#include "google_breakpad/processor/stack_frame_cpu.h"
#include "processor/cfi_frame_info.h"
#include "processor/logging.h"
#include "processor/postfix_evaluator-inl.h"
#include "processor/stackwalker_mips.h"
#include "processor/windows_frame_info.h"
#include "google_breakpad/common/minidump_cpu_mips.h"
namespace google_breakpad {
StackwalkerMIPS::StackwalkerMIPS(const SystemInfo* system_info,
const MDRawContextMIPS* context,
MemoryRegion* memory,
const CodeModules* modules,
StackFrameSymbolizer* resolver_helper)
: Stackwalker(system_info, memory, modules, resolver_helper),
context_(context) {
if (memory_) {
if (context_->context_flags & MD_CONTEXT_MIPS64 ) {
if (0xffffffffffffffff - memory_->GetBase() < memory_->GetSize() - 1) {
BPLOG(ERROR) << "Memory out of range for stackwalking mips64: "
<< HexString(memory_->GetBase())
<< "+"
<< HexString(memory_->GetSize());
memory_ = NULL;
}
} else {
if (0xffffffff - memory_->GetBase() < memory_->GetSize() - 1) {
BPLOG(ERROR) << "Memory out of range for stackwalking mips32: "
<< HexString(memory_->GetBase())
<< "+"
<< HexString(memory_->GetSize());
memory_ = NULL;
}
}
}
}
StackFrame* StackwalkerMIPS::GetContextFrame() {
if (!context_) {
BPLOG(ERROR) << "Can't get context frame without context.";
return NULL;
}
StackFrameMIPS* frame = new StackFrameMIPS();
// The instruction pointer is stored directly in a register, so pull it
// straight out of the CPU context structure.
frame->context = *context_;
frame->context_validity = StackFrameMIPS::CONTEXT_VALID_ALL;
frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
frame->instruction = frame->context.epc;
return frame;
}
// Register names for mips.
static const char* const kRegisterNames[] = {
"$zero", "$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3", "$to", "$t1",
"$t2", "$t3", "$t4", "$t5", "$t6", "$t7", "$s0", "$s1", "$s2", "$s3",
"$s4", "$s5", "$s6", "$s7", "$t8", "$t9", "$k0", "$k1", "$gp", "$sp",
"$fp", "$ra", NULL
// TODO(gordanac): add float point save registers
};
StackFrameMIPS* StackwalkerMIPS::GetCallerByCFIFrameInfo(
const vector<StackFrame*>& frames,
CFIFrameInfo* cfi_frame_info) {
StackFrameMIPS* last_frame = static_cast<StackFrameMIPS*>(frames.back());
if (context_->context_flags & MD_CONTEXT_MIPS) {
uint32_t pc = 0;
// Populate a dictionary with the valid register values in last_frame.
CFIFrameInfo::RegisterValueMap<uint32_t> callee_registers;
// Use the STACK CFI data to recover the caller's register values.
CFIFrameInfo::RegisterValueMap<uint32_t> caller_registers;
for (int i = 0; kRegisterNames[i]; ++i) {
caller_registers[kRegisterNames[i]] = last_frame->context.iregs[i];
callee_registers[kRegisterNames[i]] = last_frame->context.iregs[i];
}
if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_,
&caller_registers)) {
return NULL;
}
CFIFrameInfo::RegisterValueMap<uint32_t>::const_iterator entry =
caller_registers.find(".cfa");
if (entry != caller_registers.end()) {
caller_registers["$sp"] = entry->second;
}
entry = caller_registers.find(".ra");
if (entry != caller_registers.end()) {
caller_registers["$ra"] = entry->second;
pc = entry->second - 2 * sizeof(pc);
}
caller_registers["$pc"] = pc;
// Construct a new stack frame given the values the CFI recovered.
scoped_ptr<StackFrameMIPS> frame(new StackFrameMIPS());
for (int i = 0; kRegisterNames[i]; ++i) {
CFIFrameInfo::RegisterValueMap<uint32_t>::const_iterator caller_entry =
caller_registers.find(kRegisterNames[i]);
if (caller_entry != caller_registers.end()) {
// The value of this register is recovered; fill the context with the
// value from caller_registers.
frame->context.iregs[i] = caller_entry->second;
frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i);
} else if (((i >= INDEX_MIPS_REG_S0 && i <= INDEX_MIPS_REG_S7) ||
(i > INDEX_MIPS_REG_GP && i < INDEX_MIPS_REG_RA)) &&
(last_frame->context_validity &
StackFrameMIPS::RegisterValidFlag(i))) {
// If the STACK CFI data doesn't mention some callee-save register, and
// it is valid in the callee, assume the callee has not yet changed it.
// Calee-save registers according to the MIPS o32 ABI specification are:
// $s0 to $s7
// $sp, $s8
frame->context.iregs[i] = last_frame->context.iregs[i];
frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i);
}
}
frame->context.epc = caller_registers["$pc"];
frame->instruction = caller_registers["$pc"];
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC;
frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] = caller_registers["$ra"];
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA;
frame->trust = StackFrame::FRAME_TRUST_CFI;
return frame.release();
} else {
uint64_t pc = 0;
// Populate a dictionary with the valid register values in last_frame.
CFIFrameInfo::RegisterValueMap<uint64_t> callee_registers;
// Use the STACK CFI data to recover the caller's register values.
CFIFrameInfo::RegisterValueMap<uint64_t> caller_registers;
for (int i = 0; kRegisterNames[i]; ++i) {
caller_registers[kRegisterNames[i]] = last_frame->context.iregs[i];
callee_registers[kRegisterNames[i]] = last_frame->context.iregs[i];
}
if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_,
&caller_registers)) {
return NULL;
}
CFIFrameInfo::RegisterValueMap<uint64_t>::const_iterator entry =
caller_registers.find(".cfa");
if (entry != caller_registers.end()) {
caller_registers["$sp"] = entry->second;
}
entry = caller_registers.find(".ra");
if (entry != caller_registers.end()) {
caller_registers["$ra"] = entry->second;
pc = entry->second - 2 * sizeof(pc);
}
caller_registers["$pc"] = pc;
// Construct a new stack frame given the values the CFI recovered.
scoped_ptr<StackFrameMIPS> frame(new StackFrameMIPS());
for (int i = 0; kRegisterNames[i]; ++i) {
CFIFrameInfo::RegisterValueMap<uint64_t>::const_iterator caller_entry =
caller_registers.find(kRegisterNames[i]);
if (caller_entry != caller_registers.end()) {
// The value of this register is recovered; fill the context with the
// value from caller_registers.
frame->context.iregs[i] = caller_entry->second;
frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i);
} else if (((i >= INDEX_MIPS_REG_S0 && i <= INDEX_MIPS_REG_S7) ||
(i >= INDEX_MIPS_REG_GP && i < INDEX_MIPS_REG_RA)) &&
(last_frame->context_validity &
StackFrameMIPS::RegisterValidFlag(i))) {
// If the STACK CFI data doesn't mention some callee-save register, and
// it is valid in the callee, assume the callee has not yet changed it.
// Calee-save registers according to the MIPS o32 ABI specification are:
// $s0 to $s7
// $sp, $s8
frame->context.iregs[i] = last_frame->context.iregs[i];
frame->context_validity |= StackFrameMIPS::RegisterValidFlag(i);
}
}
frame->context.epc = caller_registers["$pc"];
frame->instruction = caller_registers["$pc"];
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC;
frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] = caller_registers["$ra"];
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA;
frame->trust = StackFrame::FRAME_TRUST_CFI;
return frame.release();
}
}
StackFrame* StackwalkerMIPS::GetCallerFrame(const CallStack* stack,
bool stack_scan_allowed) {
if (!memory_ || !stack) {
BPLOG(ERROR) << "Can't get caller frame without memory or stack";
return NULL;
}
const vector<StackFrame*>& frames = *stack->frames();
StackFrameMIPS* last_frame = static_cast<StackFrameMIPS*>(frames.back());
scoped_ptr<StackFrameMIPS> new_frame;
// See if there is DWARF call frame information covering this address.
scoped_ptr<CFIFrameInfo> cfi_frame_info(
frame_symbolizer_->FindCFIFrameInfo(last_frame));
if (cfi_frame_info.get())
new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info.get()));
// If caller frame is not found in CFI try analyzing the stack.
if (stack_scan_allowed && !new_frame.get()) {
new_frame.reset(GetCallerByStackScan(frames));
}
// If nothing worked, tell the caller.
if (!new_frame.get()) {
return NULL;
}
// Treat an instruction address of 0 as end-of-stack.
if (new_frame->context.epc == 0) {
return NULL;
}
// If the new stack pointer is at a lower address than the old, then
// that's clearly incorrect. Treat this as end-of-stack to enforce
// progress and avoid infinite loops.
if (new_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP] <=
last_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP]) {
return NULL;
}
return new_frame.release();
}
StackFrameMIPS* StackwalkerMIPS::GetCallerByStackScan(
const vector<StackFrame*>& frames) {
const uint32_t kMaxFrameStackSize = 1024;
const uint32_t kMinArgsOnStack = 4;
StackFrameMIPS* last_frame = static_cast<StackFrameMIPS*>(frames.back());
if (context_->context_flags & MD_CONTEXT_MIPS) {
uint32_t last_sp = last_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP];
uint32_t caller_pc, caller_sp, caller_fp;
// Return address cannot be obtained directly.
// Force stackwalking.
// We cannot use frame pointer to get the return address.
// We'll scan the stack for a
// return address. This can happen if last_frame is executing code
// for a module for which we don't have symbols.
int count = kMaxFrameStackSize / sizeof(caller_pc);
if (frames.size() > 1) {
// In case of mips32 ABI stack frame of a nonleaf function
// must have minimum stack frame assigned for 4 arguments (4 words).
// Move stack pointer for 4 words to avoid reporting non-existing frames
// for all frames except the topmost one.
// There is no way of knowing if topmost frame belongs to a leaf or
// a nonleaf function.
last_sp += kMinArgsOnStack * sizeof(caller_pc);
// Adjust 'count' so that return address is scanned only in limits
// of one stack frame.
count -= kMinArgsOnStack;
}
do {
// Scanning for return address from stack pointer of the last frame.
if (!ScanForReturnAddress(last_sp, &caller_sp, &caller_pc, count)) {
// If we can't find an instruction pointer even with stack scanning,
// give up.
BPLOG(ERROR) << " ScanForReturnAddress failed ";
return NULL;
}
// Get $fp stored in the stack frame.
if (!memory_->GetMemoryAtAddress(caller_sp - sizeof(caller_pc),
&caller_fp)) {
BPLOG(INFO) << " GetMemoryAtAddress for fp failed " ;
return NULL;
}
count = count - (caller_sp - last_sp) / sizeof(caller_pc);
// Now scan the next address in the stack.
last_sp = caller_sp + sizeof(caller_pc);
} while ((caller_fp - caller_sp >= kMaxFrameStackSize) && count > 0);
if (!count) {
BPLOG(INFO) << " No frame found " ;
return NULL;
}
// ScanForReturnAddress found a reasonable return address. Advance
// $sp to the location above the one where the return address was
// found.
caller_sp += sizeof(caller_pc);
// caller_pc is actually containing $ra value;
// $pc is two instructions before $ra,
// so the caller_pc needs to be decremented accordingly.
caller_pc -= 2 * sizeof(caller_pc);
// Create a new stack frame (ownership will be transferred to the caller)
// and fill it in.
StackFrameMIPS* frame = new StackFrameMIPS();
frame->trust = StackFrame::FRAME_TRUST_SCAN;
frame->context = last_frame->context;
frame->context.epc = caller_pc;
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC;
frame->instruction = caller_pc;
frame->context.iregs[MD_CONTEXT_MIPS_REG_SP] = caller_sp;
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_SP;
frame->context.iregs[MD_CONTEXT_MIPS_REG_FP] = caller_fp;
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_FP;
frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] =
caller_pc + 2 * sizeof(caller_pc);
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA;
return frame;
} else {
uint64_t last_sp = last_frame->context.iregs[MD_CONTEXT_MIPS_REG_SP];
uint64_t caller_pc, caller_sp, caller_fp;
// Return address cannot be obtained directly.
// Force stackwalking.
// We cannot use frame pointer to get the return address.
// We'll scan the stack for a
// return address. This can happen if last_frame is executing code
// for a module for which we don't have symbols.
int count = kMaxFrameStackSize / sizeof(caller_pc);
do {
// Scanning for return address from stack pointer of the last frame.
if (!ScanForReturnAddress(last_sp, &caller_sp, &caller_pc, count)) {
// If we can't find an instruction pointer even with stack scanning,
// give up.
BPLOG(ERROR) << " ScanForReturnAddress failed ";
return NULL;
}
// Get $fp stored in the stack frame.
if (!memory_->GetMemoryAtAddress(caller_sp - sizeof(caller_pc),
&caller_fp)) {
BPLOG(INFO) << " GetMemoryAtAddress for fp failed " ;
return NULL;
}
count = count - (caller_sp - last_sp) / sizeof(caller_pc);
// Now scan the next address in the stack.
last_sp = caller_sp + sizeof(caller_pc);
} while ((caller_fp - caller_sp >= kMaxFrameStackSize) && count > 0);
if (!count) {
BPLOG(INFO) << " No frame found " ;
return NULL;
}
// ScanForReturnAddress found a reasonable return address. Advance
// $sp to the location above the one where the return address was
// found.
caller_sp += sizeof(caller_pc);
// caller_pc is actually containing $ra value;
// $pc is two instructions before $ra,
// so the caller_pc needs to be decremented accordingly.
caller_pc -= 2 * sizeof(caller_pc);
// Create a new stack frame (ownership will be transferred to the caller)
// and fill it in.
StackFrameMIPS* frame = new StackFrameMIPS();
frame->trust = StackFrame::FRAME_TRUST_SCAN;
frame->context = last_frame->context;
frame->context.epc = caller_pc;
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_PC;
frame->instruction = caller_pc;
frame->context.iregs[MD_CONTEXT_MIPS_REG_SP] = caller_sp;
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_SP;
frame->context.iregs[MD_CONTEXT_MIPS_REG_FP] = caller_fp;
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_FP;
frame->context.iregs[MD_CONTEXT_MIPS_REG_RA] =
caller_pc + 2 * sizeof(caller_pc);
frame->context_validity |= StackFrameMIPS::CONTEXT_VALID_RA;
return frame;
}
}
} // namespace google_breakpad
|