aboutsummaryrefslogtreecommitdiff
path: root/src/common/dwarf/dwarf2reader.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/dwarf/dwarf2reader.h')
-rw-r--r--src/common/dwarf/dwarf2reader.h468
1 files changed, 468 insertions, 0 deletions
diff --git a/src/common/dwarf/dwarf2reader.h b/src/common/dwarf/dwarf2reader.h
index d99de334..136b8932 100644
--- a/src/common/dwarf/dwarf2reader.h
+++ b/src/common/dwarf/dwarf2reader.h
@@ -1,3 +1,5 @@
+// -*- mode: C++ -*-
+
// Copyright (c) 2010 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -26,6 +28,8 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+// CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
+
// This file contains definitions related to the DWARF2/3 reader and
// it's handler interfaces.
// The DWARF2/3 specification can be found at
@@ -398,6 +402,470 @@ class Dwarf2Handler {
};
+// This class is a reader for DWARF's Call Frame Information. CFI
+// describes how to unwind stack frames --- even for functions that do
+// not follow fixed conventions for saving registers, whose frame size
+// varies as they execute, etc.
+//
+// CFI describes, at each machine instruction, how to compute the
+// stack frame's base address, how to find the return address, and
+// where to find the saved values of the caller's registers (if the
+// callee has stashed them somewhere to free up the registers for its
+// own use).
+//
+// For example, suppose we have a function whose machine code looks
+// like this (imagine an assembly language that looks like C, for a
+// machine with 32-bit registers, and a stack that grows towards lower
+// addresses):
+//
+// func: ; entry point; return address at sp
+// func+0: sp = sp - 16 ; allocate space for stack frame
+// func+1: sp[12] = r0 ; save r0 at sp+12
+// ... ; other code, not frame-related
+// func+10: sp -= 4; *sp = x ; push some x on the stack
+// ... ; other code, not frame-related
+// func+20: r0 = sp[16] ; restore saved r0
+// func+21: sp += 20 ; pop whole stack frame
+// func+22: pc = *sp; sp += 4 ; pop return address and jump to it
+//
+// DWARF CFI is (a very compressed representation of) a table with a
+// row for each machine instruction address and a column for each
+// register showing how to restore it, if possible.
+//
+// A special column named "CFA", for "Canonical Frame Address", tells how
+// to compute the base address of the frame; registers' entries may
+// refer to the CFA in describing where the registers are saved.
+//
+// Another special column, named "RA", represents the return address.
+//
+// For example, here is a complete (uncompressed) table describing the
+// function above:
+//
+// insn cfa r0 r1 ... ra
+// =======================================
+// func+0: sp cfa[0]
+// func+1: sp+16 cfa[0]
+// func+2: sp+16 cfa[-4] cfa[0]
+// func+11: sp+20 cfa[-4] cfa[0]
+// func+21: sp+20 cfa[0]
+// func+22: sp cfa[0]
+//
+// Some things to note here:
+//
+// - Each row describes the state of affairs *before* executing the
+// instruction at the given address. Thus, the row for func+0
+// describes the state before we allocate the stack frame. In the
+// next row, the formula for computing the CFA has changed,
+// reflecting that allocation.
+//
+// - The other entries are written in terms of the CFA; this allows
+// them to remain unchanged as the stack pointer gets bumped around.
+// For example, the rule for recovering the return address (the "ra"
+// column) remains unchanged throughout the function, even as the
+// stack pointer takes on three different offsets from the return
+// address.
+//
+// - Although we haven't shown it, most calling conventions designate
+// "callee-saves" and "caller-saves" registers. The callee must
+// preserve the values of callee-saves registers; if it uses them,
+// it must save their original values somewhere, and restore them
+// before it returns. In contrast, the callee is free to trash
+// caller-saves registers; if the callee uses these, it will
+// probably not bother to save them anywhere, and the CFI will
+// probably mark their values as "unrecoverable".
+//
+// (However, since the caller cannot assume the callee was going to
+// save them, caller-saves registers are probably dead in the caller
+// anyway, so compilers usually don't generate CFA for caller-saves
+// registers.)
+//
+// - Exactly where the CFA points is a matter of convention that
+// depends on the architecture and ABI in use. In the example, the
+// CFA is the value the stack pointer had upon entry to the
+// function, pointing at the saved return address. But on the x86,
+// the call frame information generated by GCC follows the
+// convention that the CFA is the address *after* the saved return
+// address.
+//
+// But by definition, the CFA remains constant throughout the
+// lifetime of the frame. This makes it a useful value for other
+// columns to refer to. It is also gives debuggers a useful handle
+// for identifying a frame.
+//
+// If you look at the table above, you'll notice that a given entry is
+// often the same as the one immediately above it: most instructions
+// change only one or two aspects of the stack frame, if they affect
+// it at all. The DWARF format takes advantage of this fact, and
+// reduces the size of the data by mentioning only the addresses and
+// columns at which changes take place. So for the above, DWARF CFI
+// data would only actually mention the following:
+//
+// insn cfa r0 r1 ... ra
+// =======================================
+// func+0: sp cfa[0]
+// func+1: sp+16
+// func+2: cfa[-4]
+// func+11: sp+20
+// func+21: r0
+// func+22: sp
+//
+// In fact, this is the way the parser reports CFI to the consumer: as
+// a series of statements of the form, "At address X, column Y changed
+// to Z," and related conventions for describing the initial state.
+//
+// Naturally, it would be impractical to have to scan the entire
+// program's CFI, noting changes as we go, just to recover the
+// unwinding rules in effect at one particular instruction. To avoid
+// this, CFI data is grouped into "entries", each of which covers a
+// specified range of addresses and begins with a complete statement
+// of the rules for all recoverable registers at that starting
+// address. Each entry typically covers a single function.
+//
+// Thus, to compute the contents of a given row of the table --- that
+// is, rules for recovering the CFA, RA, and registers at a given
+// instruction --- the consumer should find the entry that covers that
+// instruction's address, start with the initial state supplied at the
+// beginning of the entry, and work forward until it has processed all
+// the changes up to and including those for the present instruction.
+//
+// There are seven kinds of rules that can appear in an entry of the
+// table:
+//
+// - "undefined": The given register is not preserved by the callee;
+// its value cannot be recovered.
+//
+// - "same value": This register has the same value it did in the callee.
+//
+// - offset(N): The register is saved at offset N from the CFA.
+//
+// - val_offset(N): The value the register had in the caller is the
+// CFA plus offset N. (This is usually only useful for describing
+// the stack pointer.)
+//
+// - register(R): The register's value was saved in another register R.
+//
+// - expression(E): Evaluating the DWARF expression E using the
+// current frame's registers' values yields the address at which the
+// register was saved.
+//
+// - val_expression(E): Evaluating the DWARF expression E using the
+// current frame's registers' values yields the value the register
+// had in the caller.
+
+class CallFrameInfo {
+ public:
+ // The different kinds of entries one finds in CFI. Used internally,
+ // and for error reporting.
+ enum EntryKind { kUnknown, kCIE, kFDE };
+
+ // The handler class to which the parser hands the parsed call frame
+ // information. Defined below.
+ class Handler;
+
+ // A reporter class, which CallFrameInfo uses to report errors
+ // encountered while parsing call frame information. Defined below.
+ class Reporter;
+
+ // Create a DWARF CFI parser. BUFFER points to the contents of the
+ // .debug_frame section to parse; BUFFER_LENGTH is its length in
+ // bytes. REPORTER is an error reporter the parser should use to
+ // report problems. READER is a ByteReader instance that has the
+ // endianness and address size set properly. Report the data we find
+ // to HANDLER.
+ CallFrameInfo(const char *buffer, size_t buffer_length,
+ ByteReader *reader, Handler *handler,
+ Reporter *reporter)
+ : buffer_(buffer),
+ buffer_length_(buffer_length),
+ reader_(reader),
+ handler_(handler),
+ reporter_(reporter) { }
+ ~CallFrameInfo() { }
+
+ // Parse the entries in BUFFER, reporting what we find to HANDLER.
+ // Return true if we reach the end of the section successfully, or
+ // false if we encounter an error.
+ bool Start();
+
+ // Return the textual name of KIND. For error reporting.
+ static const char *KindName(EntryKind kind);
+
+ private:
+
+ struct CIE;
+
+ // A CFI entry, either an FDE or a CIE.
+ struct Entry {
+ // The starting offset of the entry in the section, for error
+ // reporting.
+ size_t offset;
+
+ // The start of this entry in the buffer.
+ const char *start;
+
+ // The end of this entry's common prologue (initial length and id), and
+ // the start of this entry's kind-specific fields.
+ const char *fields;
+
+ // The start of this entry's instructions.
+ const char *instructions;
+
+ // The address past the entry's last byte in the buffer. (Note that
+ // since offset points to the entry's initial length field, and the
+ // length field is the number of bytes after that field, this is not
+ // simply buffer_ + offset + length.)
+ const char *end;
+
+ // The CIE pointer or CIE id field.
+ uint64 id;
+
+ // The kind of entry we're parsing.
+ //
+ // This may be kUnknown at times, since we want to be able to
+ // count on it for error reporting even before we've finished
+ // parsing enough to tell what kind of entry we're looking at.
+ EntryKind kind;
+
+ // The CIE that applies to this entry, if we've parsed it. If this is a
+ // CIE, then this field points to this structure.
+ CIE *cie;
+ };
+
+ // A common information entry (CIE).
+ struct CIE: public Entry {
+ uint8 version; // CFI data version number
+ string augmentation; // vendor format extension markers
+ uint64 code_alignment_factor; // scale for code address adjustments
+ int data_alignment_factor; // scale for stack pointer adjustments
+ unsigned return_address_register; // which register holds the return addr
+ };
+
+ // A frame description entry (FDE).
+ struct FDE: public Entry {
+ uint64 address; // start address of described code
+ uint64 size; // size of described code, in bytes
+ };
+
+ // Internal use.
+ class Rule;
+ class UndefinedRule;
+ class SameValueRule;
+ class OffsetRule;
+ class ValOffsetRule;
+ class RegisterRule;
+ class ExpressionRule;
+ class ValExpressionRule;
+ class RuleMap;
+ class State;
+
+ // Parse the initial length and id of a CFI entry, either a CIE or an
+ // FDE. CURSOR points to the beginning of the data to parse.
+ // On success, populate ENTRY as appropriate, and return true.
+ // On failure, report the problem, and return false.
+ bool ReadEntryPrologue(const char *cursor, Entry *entry);
+
+ // Parse the fields of a CIE after the entry prologue. Assume that the
+ // 'Entry' fields of CIE are populated; use CIE->fields and CIE->end as
+ // the start and limit for parsing. On success, populate the rest of
+ // *CIE, and return true; on failure, report the problem and return
+ // false.
+ bool ReadCIEFields(CIE *cie);
+
+ // Parse the fields of an FDE after the entry prologue. Assume that the
+ // 'Entry' fields of *FDE are initialized; use FDE->fields and FDE->end
+ // as the start and limit for parsing. Assume that FDE->cie is fully
+ // initialized. On success, populate the rest of *FDE, and return true;
+ // on failure, report the problem and return false.
+ bool ReadFDEFields(FDE *fde);
+
+ // Report that ENTRY is incomplete, and return false. This is just a
+ // trivial wrapper for invoking reporter_->Incomplete; it provides a
+ // little brevity.
+ bool ReportIncomplete(Entry *entry);
+
+ // The contents of the DWARF .debug_info section we're parsing.
+ const char *buffer_;
+ size_t buffer_length_;
+
+ // For reading multi-byte values with the appropriate endianness.
+ ByteReader *reader_;
+
+ // The handler to which we should report the data we find.
+ Handler *handler_;
+
+ // For reporting problems in the info we're parsing.
+ Reporter *reporter_;
+};
+
+// The handler class for CallFrameInfo. The a CFI parser calls the
+// member functions of a handler object to report the data it finds.
+class CallFrameInfo::Handler {
+ public:
+ // The pseudo-register number for the canonical frame address.
+ enum { kCFARegister = -1 };
+
+ Handler() { }
+ virtual ~Handler() { }
+
+ // The parser has found CFI for the machine code at ADDRESS,
+ // extending for LENGTH bytes. OFFSET is the offset of the frame
+ // description entry in the section, for use in error messages.
+ // VERSION is the version number of the CFI format. AUGMENTATION is
+ // a string describing any producer-specific extensions present in
+ // the data. RETURN_ADDRESS is the number of the register that holds
+ // the address to which the function should return.
+ //
+ // Entry should return true to process this CFI, or false to skip to
+ // the next entry.
+ //
+ // The parser invokes Entry for each Frame Description Entry (FDE)
+ // it finds. The parser doesn't report Common Information Entries
+ // to the handler explicitly; instead, if the handler elects to
+ // process a given FDE, the parser reiterates the appropriate CIE's
+ // contents at the beginning of the FDE's rules.
+ virtual bool Entry(size_t offset, uint64 address, uint64 length,
+ uint8 version, const string &augmentation,
+ unsigned return_address) = 0;
+
+ // When the Entry function returns true, the parser calls these
+ // handler functions repeatedly to describe the rules for recovering
+ // registers at each instruction in the given range of machine code.
+ // Immediately after a call to Entry, the handler should assume that
+ // the rule for each callee-saves register is "unchanged" --- that
+ // is, that the register still has the value it had in the caller.
+ //
+ // If a *Rule function returns true, we continue processing this entry's
+ // instructions. If a *Rule function returns false, we stop evaluating
+ // instructions, and skip to the next entry. Either way, we call End
+ // before going on to the next entry.
+ //
+ // In all of these functions, if the REG parameter is kCFARegister, then
+ // the rule describes how to find the canonical frame address.
+ // kCFARegister may be passed as a BASE_REGISTER argument, meaning that
+ // the canonical frame address should be used as the base address for the
+ // computation. All other REG values will be positive.
+
+ // At ADDRESS, register REG's value is not recoverable.
+ virtual bool UndefinedRule(uint64 address, int reg) = 0;
+
+ // At ADDRESS, register REG's value is the same as that it had in
+ // the caller.
+ virtual bool SameValueRule(uint64 address, int reg) = 0;
+
+ // At ADDRESS, register REG has been saved at offset OFFSET from
+ // BASE_REGISTER.
+ virtual bool OffsetRule(uint64 address, int reg,
+ int base_register, long offset) = 0;
+
+ // At ADDRESS, the caller's value of register REG is the current
+ // value of BASE_REGISTER plus OFFSET. (This rule doesn't provide an
+ // address at which the register's value is saved.)
+ virtual bool ValOffsetRule(uint64 address, int reg,
+ int base_register, long offset) = 0;
+
+ // At ADDRESS, register REG has been saved in BASE_REGISTER. This differs
+ // from ValOffsetRule(ADDRESS, REG, BASE_REGISTER, 0), in that
+ // BASE_REGISTER is the "home" for REG's saved value: if you want to
+ // assign to a variable whose home is REG in the calling frame, you
+ // should put the value in BASE_REGISTER.
+ virtual bool RegisterRule(uint64 address, int reg, int base_register) = 0;
+
+ // At ADDRESS, the DWARF expression EXPRESSION yields the address at
+ // which REG was saved.
+ virtual bool ExpressionRule(uint64 address, int reg,
+ const string &expression) = 0;
+
+ // At ADDRESS, the DWARF expression EXPRESSION yields the caller's
+ // value for REG. (This rule doesn't provide an address at which the
+ // register's value is saved.)
+ virtual bool ValExpressionRule(uint64 address, int reg,
+ const string &expression) = 0;
+
+ // Indicate that the rules for the address range reported by the
+ // last call to Entry are complete. End should return true if
+ // everything is okay, or false if an error has occurred and parsing
+ // should stop.
+ virtual bool End() = 0;
+};
+
+// The CallFrameInfo class makes calls on an instance of this class to
+// report errors or warn about problems in the data it is parsing. The
+// default definitions of these methods print a message to stderr, but
+// you can make a derived class that overrides them.
+class CallFrameInfo::Reporter {
+ public:
+ // Create an error reporter which attributes troubles to the section
+ // named SECTION in FILENAME.
+ //
+ // Normally SECTION would be .debug_frame, but the Mac puts CFI data
+ // in a Mach-O section named __debug_frame. If we support
+ // Linux-style exception handling data, we could be reading an
+ // .eh_frame section.
+ Reporter(const string &filename,
+ const string &section = ".debug_frame")
+ : filename_(filename), section_(section) { }
+ virtual ~Reporter() { }
+
+ // The CFI entry at OFFSET ends too early to be well-formed. KIND
+ // indicates what kind of entry it is; KIND can be kUnknown if we
+ // haven't parsed enough of the entry to tell yet.
+ virtual void Incomplete(uint64 offset, CallFrameInfo::EntryKind kind);
+
+ // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the
+ // section is not that large.
+ virtual void CIEPointerOutOfRange(uint64 offset, uint64 cie_offset);
+
+ // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the entry
+ // there is not a CIE.
+ virtual void BadCIEId(uint64 offset, uint64 cie_offset);
+
+ // The FDE at OFFSET refers to a CIE with version number VERSION,
+ // which we don't recognize. We cannot parse DWARF CFI if it uses
+ // a version number we don't recognize.
+ virtual void UnrecognizedVersion(uint64 offset, int version);
+
+ // The FDE at OFFSET refers to a CIE with augmentation AUGMENTATION,
+ // which we don't recognize. We cannot parse DWARF CFI if it uses
+ // augmentations we don't recognize.
+ virtual void UnrecognizedAugmentation(uint64 offset,
+ const string &augmentation);
+
+ // The CIE at OFFSET contains a DW_CFA_restore instruction at
+ // INSN_OFFSET, which may not appear in a CIE.
+ virtual void RestoreInCIE(uint64 offset, uint64 insn_offset);
+
+ // The entry at OFFSET, of kind KIND, has an unrecognized
+ // instruction at INSN_OFFSET.
+ virtual void BadInstruction(uint64 offset, CallFrameInfo::EntryKind kind,
+ uint64 insn_offset);
+
+ // The instruction at INSN_OFFSET in the entry at OFFSET, of kind
+ // KIND, establishes a rule that cites the CFA, but we have not
+ // established a CFA rule yet.
+ virtual void NoCFARule(uint64 offset, CallFrameInfo::EntryKind kind,
+ uint64 insn_offset);
+
+ // The instruction at INSN_OFFSET in the entry at OFFSET, of kind
+ // KIND, is a DW_CFA_restore_state instruction, but the stack of
+ // saved states is empty.
+ virtual void EmptyStateStack(uint64 offset, CallFrameInfo::EntryKind kind,
+ uint64 insn_offset);
+
+ // The DW_CFA_remember_state instruction at INSN_OFFSET in the entry
+ // at OFFSET, of kind KIND, would restore a state that has no CFA
+ // rule, whereas the current state does have a CFA rule. This is
+ // bogus input, which the CallFrameInfo::Handler interface doesn't
+ // (and shouldn't) have any way to report.
+ virtual void ClearingCFARule(uint64 offset, CallFrameInfo::EntryKind kind,
+ uint64 insn_offset);
+
+ protected:
+ // The name of the file whose CFI we're reading.
+ string filename_;
+
+ // The name of the CFI section in that file.
+ string section_;
+};
} // namespace dwarf2reader